
For a natural number $n\in N$, the value of $\sum\limits_{m=1}^{n}{{{m}^{2}}}$ is given by
A. $\dfrac{m\left( m+1 \right)\left( 2m+1 \right)}{6}$
B. $\dfrac{m\left( m-1 \right)\left( 2m-1 \right)}{6}$
C. $\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$
D. None of these.
Answer
588k+ views
Hint: To solve this problem, we should know the formula related to sum of squares of first n natural numbers. The sigma notation given in the question can be written as $\sum\limits_{m=1}^{n}{{{m}^{2}}}={{1}^{2}}+{{2}^{2}}+{{3}^{2}}.........{{n}^{2}}$ which is the sum of squares of first n natural numbers. The sum of the first n natural numbers is given by the formula $\sum\limits_{m=1}^{n}{{{m}^{2}}}={{1}^{2}}+{{2}^{2}}+{{3}^{2}}.........{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$. To get this formula, we should consider ${{\left( n+1 \right)}^{3}}-{{n}^{3}}$ and write its value using the formula ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)$. After that, we should replace n by the decreasing numbers until 2. This will give a telescopic series in which terms will be cancelled when we add them. By adding, we will get sum of first n natural numbers and sum of squares of first n natural numbers in the R.H.S of the equation. By using the formula for sum of first n natural numbers as $\sum\limits_{m=1}^{n}{m}=\dfrac{n\left( n+1 \right)}{2}$ and simplifying, we get the required value of $\sum\limits_{m=1}^{n}{{{m}^{2}}}$. The proof related to this formula is done in the below solution part.
Complete step by step answer:
We are asked to find the value of $\sum\limits_{m=1}^{n}{{{m}^{2}}}$. To get the answer we should consider ${{\left( n+1 \right)}^{3}}-{{n}^{3}}$.
Let us consider the term ${{\left( n+1 \right)}^{3}}-{{n}^{3}}$.
We know the formula ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)$. Using this formula with
$a=n+1,b=n$, we get
$\begin{align}
& {{\left( n+1 \right)}^{3}}-{{n}^{3}}=\left( n+1-n \right)\left( {{\left( n+1 \right)}^{2}}+\left( n+1 \right)n+{{n}^{2}} \right) \\
& {{\left( n+1 \right)}^{3}}-{{n}^{3}}=\left( {{n}^{2}}+2n+1+{{n}^{2}}+n+{{n}^{2}} \right) \\
& {{\left( n+1 \right)}^{3}}-{{n}^{3}}=3{{n}^{2}}+3n+1\to \left( 1 \right) \\
\end{align}$
By substituting $n=n-1$ in the above equation, we get
$\begin{align}
& {{\left( n-1+1 \right)}^{3}}-{{\left( n-1 \right)}^{3}}=3{{\left( n-1 \right)}^{2}}+3\left( n-1 \right)+1 \\
& {{\left( n \right)}^{3}}-{{\left( n-1 \right)}^{3}}=3{{\left( n-1 \right)}^{2}}+3\left( n-1 \right)+1\to \left( 2 \right) \\
\end{align}$
Likewise, substituting the numbers $n=n-2,.....2,1$ in the equation-1, we get
$\begin{align}
& {{\left( n-2+1 \right)}^{3}}-{{\left( n-2 \right)}^{3}}=3{{\left( n-2 \right)}^{2}}+3\left( n-2 \right)+1 \\
& {{\left( n-1 \right)}^{3}}-{{\left( n-2 \right)}^{3}}=3{{\left( n-2 \right)}^{2}}+3\left( n-2 \right)+1\to \left( 3 \right) \\
\end{align}$
${{\left( 2+1 \right)}^{3}}-{{\left( 2 \right)}^{3}}=3{{\left( 2 \right)}^{2}}+3\left( 2 \right)+1\to \left( 4 \right)$
${{\left( 2 \right)}^{3}}-{{\left( 1 \right)}^{3}}=3{{\left( 1 \right)}^{2}}+3\left( 1 \right)+1\to \left( 5 \right)$
Writing all the equations, we get
$\begin{align}
& {{\left( n+1 \right)}^{3}}-{{n}^{3}}=3{{n}^{2}}+3n+1\to \left( 1 \right) \\
& {{\left( n \right)}^{3}}-{{\left( n-1 \right)}^{3}}=3{{\left( n-1 \right)}^{2}}+3\left( n-1 \right)+1\to \left( 2 \right) \\
& {{\left( n-1 \right)}^{3}}-{{\left( n-2 \right)}^{3}}=3{{\left( n-2 \right)}^{2}}+3\left( n-2 \right)+1\to \left( 3 \right) \\
& . \\
& . \\
& . \\
& {{\left( 2+1 \right)}^{3}}-{{\left( 2 \right)}^{3}}=3{{\left( 2 \right)}^{2}}+3\left( 2 \right)+1\to \left( 4 \right) \\
& {{\left( 2 \right)}^{3}}-{{\left( 1 \right)}^{3}}=3{{\left( 1 \right)}^{2}}+3\left( 1 \right)+1\to \left( 5 \right) \\
\end{align}$
Adding all the equations, we can infer that the terms in L.H.S will be cancelled and only ${{\left( n+1 \right)}^{3}}-{{1}^{3}}$ is left in the L.H.S. The terms in the R.H.S will become
$\begin{align}
& {{\left( n+1 \right)}^{3}}-{{1}^{3}}=3\left( {{n}^{2}}+{{\left( n-1 \right)}^{2}}+{{\left( n-2 \right)}^{2}}+{{......2}^{2}}+{{1}^{2}} \right)+3\left( n+\left( n-1 \right)+\left( n-2 \right)....2+1 \right)+\left( 1+1+1.....\text{n terms} \right) \\
& {{\left( n+1 \right)}^{3}}-1=3\sum\limits_{m=1}^{n}{{{m}^{2}}+3\sum\limits_{m=1}^{n}{m}}+n \\
\end{align}$
We know the formula for the sum of first n natural numbers as $\sum\limits_{m=1}^{n}{m}=\dfrac{n\left( n+1 \right)}{2}$. Using this result in the above equation, we get
${{\left( n+1 \right)}^{3}}-1=3\sum\limits_{m=1}^{n}{{{m}^{2}}+3\dfrac{n\left( n+1 \right)}{2}}+n$
By simplifying, we get
\[\begin{align}
& {{\left( n+1 \right)}^{3}}-1=3\sum\limits_{m=1}^{n}{{{m}^{2}}+3\dfrac{n\left( n+1 \right)}{2}}+n \\
& 3\sum\limits_{m=1}^{n}{{{m}^{2}}={{\left( n+1 \right)}^{3}}-}3\dfrac{n\left( n+1 \right)}{2}-\left( n+1 \right) \\
& 3\sum\limits_{m=1}^{n}{{{m}^{2}}=\left( n+1 \right)\left( {{\left( n+1 \right)}^{2}}-3\dfrac{n}{2}-1 \right)}=\left( n+1 \right)\left( \dfrac{2{{\left( n+1 \right)}^{2}}-3n-2}{2} \right) \\
& 3\sum\limits_{m=1}^{n}{{{m}^{2}}=}\dfrac{\left( n+1 \right)}{2}\left( 2{{n}^{2}}+4n+2-3n-2 \right)=\dfrac{\left( n+1 \right)}{2}\left( 2{{n}^{2}}+n \right)=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{2} \\
\end{align}\]
We got relation as
\[3\sum\limits_{m=1}^{n}{{{m}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{2}\]
Hence we can write the sum of the squares of first n natural numbers as
\[\sum\limits_{m=1}^{n}{{{m}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\]
$\therefore $ We got the required formula for the term \[\sum\limits_{m=1}^{n}{{{m}^{2}}}\] as \[\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\].
So, the correct answer is “Option C”.
Note: Students can make a mistake by choosing the answer as option-A. This is a common error because of the anxiety of knowing the answer. That is why a probable wrong answer is placed in option-A. To avoid this error, we should expand the sigma notation and see whether there are m terms of n terms in the expansion. This is an important formula and students are recommended to remember the formula for the sum of first n natural numbers as \[\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\].
Complete step by step answer:
We are asked to find the value of $\sum\limits_{m=1}^{n}{{{m}^{2}}}$. To get the answer we should consider ${{\left( n+1 \right)}^{3}}-{{n}^{3}}$.
Let us consider the term ${{\left( n+1 \right)}^{3}}-{{n}^{3}}$.
We know the formula ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)$. Using this formula with
$a=n+1,b=n$, we get
$\begin{align}
& {{\left( n+1 \right)}^{3}}-{{n}^{3}}=\left( n+1-n \right)\left( {{\left( n+1 \right)}^{2}}+\left( n+1 \right)n+{{n}^{2}} \right) \\
& {{\left( n+1 \right)}^{3}}-{{n}^{3}}=\left( {{n}^{2}}+2n+1+{{n}^{2}}+n+{{n}^{2}} \right) \\
& {{\left( n+1 \right)}^{3}}-{{n}^{3}}=3{{n}^{2}}+3n+1\to \left( 1 \right) \\
\end{align}$
By substituting $n=n-1$ in the above equation, we get
$\begin{align}
& {{\left( n-1+1 \right)}^{3}}-{{\left( n-1 \right)}^{3}}=3{{\left( n-1 \right)}^{2}}+3\left( n-1 \right)+1 \\
& {{\left( n \right)}^{3}}-{{\left( n-1 \right)}^{3}}=3{{\left( n-1 \right)}^{2}}+3\left( n-1 \right)+1\to \left( 2 \right) \\
\end{align}$
Likewise, substituting the numbers $n=n-2,.....2,1$ in the equation-1, we get
$\begin{align}
& {{\left( n-2+1 \right)}^{3}}-{{\left( n-2 \right)}^{3}}=3{{\left( n-2 \right)}^{2}}+3\left( n-2 \right)+1 \\
& {{\left( n-1 \right)}^{3}}-{{\left( n-2 \right)}^{3}}=3{{\left( n-2 \right)}^{2}}+3\left( n-2 \right)+1\to \left( 3 \right) \\
\end{align}$
${{\left( 2+1 \right)}^{3}}-{{\left( 2 \right)}^{3}}=3{{\left( 2 \right)}^{2}}+3\left( 2 \right)+1\to \left( 4 \right)$
${{\left( 2 \right)}^{3}}-{{\left( 1 \right)}^{3}}=3{{\left( 1 \right)}^{2}}+3\left( 1 \right)+1\to \left( 5 \right)$
Writing all the equations, we get
$\begin{align}
& {{\left( n+1 \right)}^{3}}-{{n}^{3}}=3{{n}^{2}}+3n+1\to \left( 1 \right) \\
& {{\left( n \right)}^{3}}-{{\left( n-1 \right)}^{3}}=3{{\left( n-1 \right)}^{2}}+3\left( n-1 \right)+1\to \left( 2 \right) \\
& {{\left( n-1 \right)}^{3}}-{{\left( n-2 \right)}^{3}}=3{{\left( n-2 \right)}^{2}}+3\left( n-2 \right)+1\to \left( 3 \right) \\
& . \\
& . \\
& . \\
& {{\left( 2+1 \right)}^{3}}-{{\left( 2 \right)}^{3}}=3{{\left( 2 \right)}^{2}}+3\left( 2 \right)+1\to \left( 4 \right) \\
& {{\left( 2 \right)}^{3}}-{{\left( 1 \right)}^{3}}=3{{\left( 1 \right)}^{2}}+3\left( 1 \right)+1\to \left( 5 \right) \\
\end{align}$
Adding all the equations, we can infer that the terms in L.H.S will be cancelled and only ${{\left( n+1 \right)}^{3}}-{{1}^{3}}$ is left in the L.H.S. The terms in the R.H.S will become
$\begin{align}
& {{\left( n+1 \right)}^{3}}-{{1}^{3}}=3\left( {{n}^{2}}+{{\left( n-1 \right)}^{2}}+{{\left( n-2 \right)}^{2}}+{{......2}^{2}}+{{1}^{2}} \right)+3\left( n+\left( n-1 \right)+\left( n-2 \right)....2+1 \right)+\left( 1+1+1.....\text{n terms} \right) \\
& {{\left( n+1 \right)}^{3}}-1=3\sum\limits_{m=1}^{n}{{{m}^{2}}+3\sum\limits_{m=1}^{n}{m}}+n \\
\end{align}$
We know the formula for the sum of first n natural numbers as $\sum\limits_{m=1}^{n}{m}=\dfrac{n\left( n+1 \right)}{2}$. Using this result in the above equation, we get
${{\left( n+1 \right)}^{3}}-1=3\sum\limits_{m=1}^{n}{{{m}^{2}}+3\dfrac{n\left( n+1 \right)}{2}}+n$
By simplifying, we get
\[\begin{align}
& {{\left( n+1 \right)}^{3}}-1=3\sum\limits_{m=1}^{n}{{{m}^{2}}+3\dfrac{n\left( n+1 \right)}{2}}+n \\
& 3\sum\limits_{m=1}^{n}{{{m}^{2}}={{\left( n+1 \right)}^{3}}-}3\dfrac{n\left( n+1 \right)}{2}-\left( n+1 \right) \\
& 3\sum\limits_{m=1}^{n}{{{m}^{2}}=\left( n+1 \right)\left( {{\left( n+1 \right)}^{2}}-3\dfrac{n}{2}-1 \right)}=\left( n+1 \right)\left( \dfrac{2{{\left( n+1 \right)}^{2}}-3n-2}{2} \right) \\
& 3\sum\limits_{m=1}^{n}{{{m}^{2}}=}\dfrac{\left( n+1 \right)}{2}\left( 2{{n}^{2}}+4n+2-3n-2 \right)=\dfrac{\left( n+1 \right)}{2}\left( 2{{n}^{2}}+n \right)=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{2} \\
\end{align}\]
We got relation as
\[3\sum\limits_{m=1}^{n}{{{m}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{2}\]
Hence we can write the sum of the squares of first n natural numbers as
\[\sum\limits_{m=1}^{n}{{{m}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\]
$\therefore $ We got the required formula for the term \[\sum\limits_{m=1}^{n}{{{m}^{2}}}\] as \[\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\].
So, the correct answer is “Option C”.
Note: Students can make a mistake by choosing the answer as option-A. This is a common error because of the anxiety of knowing the answer. That is why a probable wrong answer is placed in option-A. To avoid this error, we should expand the sigma notation and see whether there are m terms of n terms in the expansion. This is an important formula and students are recommended to remember the formula for the sum of first n natural numbers as \[\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

