
Find \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}\] if \[{{x}^{2}}+xy+xz=135,{{y}^{2}}+yz+yx=351\] and \[{{z}^{2}}+zx+zy=243\].
(a) 225
(b) 250
(c) 275
(d) 300
Answer
608.7k+ views
Hint: Add all three given equations and use the identity \[{{\left( x+y+z \right)}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx\] to find the value of \[\left( x+y+z \right)\]. Now, take out \[\left( x+y+z \right)\] common from each of the three equations to get x, y and z. And then find the value of \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}\].
Complete step-by-step answer:
We are given that \[{{x}^{2}}+xy+xz=135,{{y}^{2}}+yz+yx=351\] and \[{{z}^{2}}+zx+zy=243\]. Here we have to find the value \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}\].
First of all, let us consider the equations given in the question
\[{{x}^{2}}+xy+xz=135....\left( i \right)\]
\[{{y}^{2}}+yz+yx=351.....\left( ii \right)\]
\[{{z}^{2}}+zx+zy=243....\left( iii \right)\]
Now, let us add equation (i), (ii) and (iii), we get
$\Rightarrow$ \[{{x}^{2}}+xy+xz+{{y}^{2}}+yz+yx+{{z}^{2}}+zx+zy=135+351+243\]
By rearranging the above equation, we get,
$\Rightarrow$ \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+xy+yx+xz+zx+zy+yz=729\]
By adding the like terms in the above equation, we get,
\[\Rightarrow {{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx=729\]
We know that \[{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca\]
By applying this in the above equation we get,
\[\Rightarrow {{\left( x+y+z \right)}^{2}}=729\]
By substituting \[729={{\left( 27 \right)}^{2}}\]in the above equation, we get,
\[{{\left( x+y+z \right)}^{2}}={{\left( 27 \right)}^{2}}\]
We know that when \[{{a}^{p}}={{b}^{p}}\] then a = b for all values of ‘a’ and ‘b’ except 1 and -1. By applying this in the above equation, we get,
$\Rightarrow$ \[x+y+z=27....\left( iv \right)\]
Now, by taking out x common from LHS of equation (i), we get,
$\Rightarrow$ \[x\left( x+y+z \right)=135\]
By substituting the value of \[\left( x+y+z \right)\] from equation (iv), we get
$\Rightarrow$ \[x\left( 27 \right)=135\]
By dividing 27 on both the sides, we get
$\Rightarrow$ \[x=5\]
By squaring both the sides, we get,
$\Rightarrow$ \[{{x}^{2}}={{5}^{2}}=25....\left( a \right)\]
Now, by taking out y common from LHS of equation (ii), we get,
$\Rightarrow$ \[y\left( y+x+z \right)=351\]
By substituting the value of \[\left( x+y+z \right)\] from equation (iv), we get,
$\Rightarrow$ \[y\left( 27 \right)=351\]
By dividing 27 on both the sides, we get,
$\Rightarrow$ \[y=13\]
By squaring both the sides, we get,
$\Rightarrow$ \[{{y}^{2}}=169....\left( b \right)\]
Now, by taking out z from LHS of equation (iii), we get,
$\Rightarrow$ \[z\left( z+y+x \right)=243\]
By substituting the value of \[\left( x+y+z \right)\] from equation (iv), we get,
$\Rightarrow$ \[z\left( 27 \right)=243\]
By dividing 27 on both the sides, we get,
$\Rightarrow$ \[z=9\]
By squaring both the sides, we get,
$\Rightarrow$ \[{{z}^{2}}=81....\left( c \right)\]
By adding equation (a), equation (b) and equation (c), we get
$\Rightarrow$ \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}=25+169+81\]
$\Rightarrow$ \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}=275\]
Hence, we get the value of \[\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\] is 275.
Note: Students should always remember this approach of using the formula \[{{\left( x+y+z \right)}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx\] whenever they see the terms like \[{{x}^{2}},{{y}^{2}},{{z}^{2}}\] and \[xy,yz,zx\] together in the same question. Also, students can cross-check their values of x, y and z by substituting it in equation (i), (ii) and (iii) and checking if LHS = RHS or not.
Complete step-by-step answer:
We are given that \[{{x}^{2}}+xy+xz=135,{{y}^{2}}+yz+yx=351\] and \[{{z}^{2}}+zx+zy=243\]. Here we have to find the value \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}\].
First of all, let us consider the equations given in the question
\[{{x}^{2}}+xy+xz=135....\left( i \right)\]
\[{{y}^{2}}+yz+yx=351.....\left( ii \right)\]
\[{{z}^{2}}+zx+zy=243....\left( iii \right)\]
Now, let us add equation (i), (ii) and (iii), we get
$\Rightarrow$ \[{{x}^{2}}+xy+xz+{{y}^{2}}+yz+yx+{{z}^{2}}+zx+zy=135+351+243\]
By rearranging the above equation, we get,
$\Rightarrow$ \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+xy+yx+xz+zx+zy+yz=729\]
By adding the like terms in the above equation, we get,
\[\Rightarrow {{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx=729\]
We know that \[{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca\]
By applying this in the above equation we get,
\[\Rightarrow {{\left( x+y+z \right)}^{2}}=729\]
By substituting \[729={{\left( 27 \right)}^{2}}\]in the above equation, we get,
\[{{\left( x+y+z \right)}^{2}}={{\left( 27 \right)}^{2}}\]
We know that when \[{{a}^{p}}={{b}^{p}}\] then a = b for all values of ‘a’ and ‘b’ except 1 and -1. By applying this in the above equation, we get,
$\Rightarrow$ \[x+y+z=27....\left( iv \right)\]
Now, by taking out x common from LHS of equation (i), we get,
$\Rightarrow$ \[x\left( x+y+z \right)=135\]
By substituting the value of \[\left( x+y+z \right)\] from equation (iv), we get
$\Rightarrow$ \[x\left( 27 \right)=135\]
By dividing 27 on both the sides, we get
$\Rightarrow$ \[x=5\]
By squaring both the sides, we get,
$\Rightarrow$ \[{{x}^{2}}={{5}^{2}}=25....\left( a \right)\]
Now, by taking out y common from LHS of equation (ii), we get,
$\Rightarrow$ \[y\left( y+x+z \right)=351\]
By substituting the value of \[\left( x+y+z \right)\] from equation (iv), we get,
$\Rightarrow$ \[y\left( 27 \right)=351\]
By dividing 27 on both the sides, we get,
$\Rightarrow$ \[y=13\]
By squaring both the sides, we get,
$\Rightarrow$ \[{{y}^{2}}=169....\left( b \right)\]
Now, by taking out z from LHS of equation (iii), we get,
$\Rightarrow$ \[z\left( z+y+x \right)=243\]
By substituting the value of \[\left( x+y+z \right)\] from equation (iv), we get,
$\Rightarrow$ \[z\left( 27 \right)=243\]
By dividing 27 on both the sides, we get,
$\Rightarrow$ \[z=9\]
By squaring both the sides, we get,
$\Rightarrow$ \[{{z}^{2}}=81....\left( c \right)\]
By adding equation (a), equation (b) and equation (c), we get
$\Rightarrow$ \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}=25+169+81\]
$\Rightarrow$ \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}=275\]
Hence, we get the value of \[\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\] is 275.
Note: Students should always remember this approach of using the formula \[{{\left( x+y+z \right)}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx\] whenever they see the terms like \[{{x}^{2}},{{y}^{2}},{{z}^{2}}\] and \[xy,yz,zx\] together in the same question. Also, students can cross-check their values of x, y and z by substituting it in equation (i), (ii) and (iii) and checking if LHS = RHS or not.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

The number of words can be formed from the letters class 10 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Least count of spring balance if spring balance has class 10 physics CBSE

Explain the political and economic causes for the revolt class 10 social science CBSE

Nagarjuna is known as the Einstein of India because class 10 social science CBSE

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is the Full Form of ISI and RAW

Golden Revolution is related to AFood production BOil class 9 social science CBSE

