
Find three equivalent ratios of $\dfrac{{12}}{{13}}$ .
Answer
523.5k+ views
Hint: To get a ratio equivalent to a given ratio use multiply or divide both the terms of the given ratio by the same non zero number. We will learn how to find the equivalent ratio of a given ratio by writing the ratio as a fraction and then compare by using multiplication and division.
Complete step by step solution:
$12:32 = \dfrac{{12}}{{32}}$
$\dfrac{{\left( {12 \times 2} \right)}}{{32 \times 2}}$ [Multiply numerator by 2 and denominator by 2]
$ \Rightarrow \dfrac{{24}}{{64}} = \dfrac{3}{8}$
Similarly we again, use need to write the given ratio $\dfrac{3}{8}$ as dfraction to get another equivalent ratio
$\dfrac{{3 \times 2}}{{8 \times 2}} = \dfrac{6}{{16}}$[Both multiply numerator and denominator by 2]
Similarly use again, we need to write the given ratio$\dfrac{6}{{16}}$ as fraction to get
$\dfrac{{6 \times 2}}{{16 \times 2}} = \dfrac{{12}}{{32}}$[Both multiple numerator and denominator by 2]
Similarly we again, we need to write the given ratio $\dfrac{{12}}{{32}}$ as fraction to get
$\dfrac{{12 \times 2}}{{32 \times 2}} = \dfrac{{24}}{{64}} = \dfrac{3}{8}$
$\dfrac{{3 \times 6}}{{8 \times 6}} = \dfrac{{18}}{{48}}$ [Multiply both numerator and denominator by 6]
$\therefore $ $12:32$ is the second equivalent ratio
$18:48$ is the third equivalent ratio
Therefore, the three equivalent ratios of $3:8$ are $6:16$ , $12:32$ and $18:48$.
Note: Students keep in mind that we will multiply the same number into numerator and denominator to convert into the equivalent fraction and ratio. To get an equivalent ratio to a given ratio by multiplying and dividing both.
Complete step by step solution:
$12:32 = \dfrac{{12}}{{32}}$
$\dfrac{{\left( {12 \times 2} \right)}}{{32 \times 2}}$ [Multiply numerator by 2 and denominator by 2]
$ \Rightarrow \dfrac{{24}}{{64}} = \dfrac{3}{8}$
Similarly we again, use need to write the given ratio $\dfrac{3}{8}$ as dfraction to get another equivalent ratio
$\dfrac{{3 \times 2}}{{8 \times 2}} = \dfrac{6}{{16}}$[Both multiply numerator and denominator by 2]
Similarly use again, we need to write the given ratio$\dfrac{6}{{16}}$ as fraction to get
$\dfrac{{6 \times 2}}{{16 \times 2}} = \dfrac{{12}}{{32}}$[Both multiple numerator and denominator by 2]
Similarly we again, we need to write the given ratio $\dfrac{{12}}{{32}}$ as fraction to get
$\dfrac{{12 \times 2}}{{32 \times 2}} = \dfrac{{24}}{{64}} = \dfrac{3}{8}$
$\dfrac{{3 \times 6}}{{8 \times 6}} = \dfrac{{18}}{{48}}$ [Multiply both numerator and denominator by 6]
$\therefore $ $12:32$ is the second equivalent ratio
$18:48$ is the third equivalent ratio
Therefore, the three equivalent ratios of $3:8$ are $6:16$ , $12:32$ and $18:48$.
Note: Students keep in mind that we will multiply the same number into numerator and denominator to convert into the equivalent fraction and ratio. To get an equivalent ratio to a given ratio by multiplying and dividing both.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Which period in Medieval Western Europe is known as class 10 social science CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

Who administers the oath of office to the President class 10 social science CBSE

What is an 11 and 12 sided shape called class 10 maths CBSE

What are the public facilities provided by the government? Also explain each facility

Identify the feminine form of the word Duke a Dukes class 10 english CBSE
