
Find the vector and the Cartesian equations of the line that passes through the points (3,-2,-5) and (3,-2,6).
Answer
567.6k+ views
Hint: Start by considering the points as some variable and find out the direction ratios of the line joining these two points. Convert this direction ratios into either vector or cartesian format and apply relevant formula for line passing through the point in direction of AB , Convert one form to the other by taking the correct direction ratios and coordinates.
Complete step-by-step answer:
Given,
(3,-2,-5)= A(say)
(3,-2,6)= B(say)
Let the line passing through the points A and B be AB.
Now , we will find out the direction ratios of AB which can be found out by taking the difference of one coordinate to the other.
So, The direction ratios of AB will be
X coordinates=$l$ = $3 - 3 = 0$
Y coordinates =$m$ =$ - 2 - ( - 2) = - 2 + 2 = 0$
Z coordinates = $n$ =$6 - ( - 5) = 6 + 5 = 11$
Now , that we know direction ratios of AB ,let us write it in vector form
$\overrightarrow c = 0\hat i + 0\hat j + 11\hat k$
Since, AB passes through A(3,-2,-5), the position vector of A will be written as
$\overrightarrow a = 3\hat i - 2\hat j - 5\hat k$
The equation of AB in vector form is given by the relation
$\overrightarrow r $ = $\overrightarrow a $ + $ \lambda \overrightarrow c $
Substituting the values of $\overrightarrow a $and $\overrightarrow c $, we get
$\Rightarrow \overrightarrow r = (3\hat i - 2\hat j - 5\hat k) + \lambda 11\hat k$
The equation of AB in Cartesian form is given by the relation
$\dfrac{{x - {x_1}}}{l} = \dfrac{{y - {y_1}}}{m} = \dfrac{{z - {z_1}}}{n}$ where ${x_1},{y_1},{z_1}$are the coordinates of point passing through and $l,m,n$are the direction ratios of the line.
Substituting the values of coordinates of A and direction ratio of AB , we get
$ \Rightarrow \dfrac{{x - 3}}{0} = \dfrac{{y - \left( { - 2} \right)}}{0} = \dfrac{{z - \left( { - 5} \right)}}{{11}}$
$\dfrac{{x - 3}}{0} = \dfrac{{y + 2}}{0} = \dfrac{{z + 5}}{{11}}$
So, this is the required Cartesian equation.
Therefore , the equation of line AB in vector form is $\overrightarrow {AB} = (3\hat i - 2\hat j - 5\hat k) + \lambda 11\hat k$ and in the cartesian form is $\dfrac{{x - 3}}{0} = \dfrac{{y + 2}}{0} = \dfrac{{z + 5}}{{11}}$.
Note: Such similar questions can be solved using the above procedure. If the equation is found in one form whether vector or cartesian it can easily be converted into the other easily , by taking correct values. Attention must be given while substituting the values as it may lead to wrong answers.
Complete step-by-step answer:
Given,
(3,-2,-5)= A(say)
(3,-2,6)= B(say)
Let the line passing through the points A and B be AB.
Now , we will find out the direction ratios of AB which can be found out by taking the difference of one coordinate to the other.
So, The direction ratios of AB will be
X coordinates=$l$ = $3 - 3 = 0$
Y coordinates =$m$ =$ - 2 - ( - 2) = - 2 + 2 = 0$
Z coordinates = $n$ =$6 - ( - 5) = 6 + 5 = 11$
Now , that we know direction ratios of AB ,let us write it in vector form
$\overrightarrow c = 0\hat i + 0\hat j + 11\hat k$
Since, AB passes through A(3,-2,-5), the position vector of A will be written as
$\overrightarrow a = 3\hat i - 2\hat j - 5\hat k$
The equation of AB in vector form is given by the relation
$\overrightarrow r $ = $\overrightarrow a $ + $ \lambda \overrightarrow c $
Substituting the values of $\overrightarrow a $and $\overrightarrow c $, we get
$\Rightarrow \overrightarrow r = (3\hat i - 2\hat j - 5\hat k) + \lambda 11\hat k$
The equation of AB in Cartesian form is given by the relation
$\dfrac{{x - {x_1}}}{l} = \dfrac{{y - {y_1}}}{m} = \dfrac{{z - {z_1}}}{n}$ where ${x_1},{y_1},{z_1}$are the coordinates of point passing through and $l,m,n$are the direction ratios of the line.
Substituting the values of coordinates of A and direction ratio of AB , we get
$ \Rightarrow \dfrac{{x - 3}}{0} = \dfrac{{y - \left( { - 2} \right)}}{0} = \dfrac{{z - \left( { - 5} \right)}}{{11}}$
$\dfrac{{x - 3}}{0} = \dfrac{{y + 2}}{0} = \dfrac{{z + 5}}{{11}}$
So, this is the required Cartesian equation.
Therefore , the equation of line AB in vector form is $\overrightarrow {AB} = (3\hat i - 2\hat j - 5\hat k) + \lambda 11\hat k$ and in the cartesian form is $\dfrac{{x - 3}}{0} = \dfrac{{y + 2}}{0} = \dfrac{{z + 5}}{{11}}$.
Note: Such similar questions can be solved using the above procedure. If the equation is found in one form whether vector or cartesian it can easily be converted into the other easily , by taking correct values. Attention must be given while substituting the values as it may lead to wrong answers.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

