Answer
Verified
454.5k+ views
Hint: Start by considering the points as some variable and find out the direction ratios of the line joining these two points. Convert this direction ratios into either vector or cartesian format and apply relevant formula for line passing through the point in direction of AB , Convert one form to the other by taking the correct direction ratios and coordinates.
Complete step-by-step answer:
Given,
(3,-2,-5)= A(say)
(3,-2,6)= B(say)
Let the line passing through the points A and B be AB.
Now , we will find out the direction ratios of AB which can be found out by taking the difference of one coordinate to the other.
So, The direction ratios of AB will be
X coordinates=$l$ = $3 - 3 = 0$
Y coordinates =$m$ =$ - 2 - ( - 2) = - 2 + 2 = 0$
Z coordinates = $n$ =$6 - ( - 5) = 6 + 5 = 11$
Now , that we know direction ratios of AB ,let us write it in vector form
$\overrightarrow c = 0\hat i + 0\hat j + 11\hat k$
Since, AB passes through A(3,-2,-5), the position vector of A will be written as
$\overrightarrow a = 3\hat i - 2\hat j - 5\hat k$
The equation of AB in vector form is given by the relation
$\overrightarrow r $ = $\overrightarrow a $ + $ \lambda \overrightarrow c $
Substituting the values of $\overrightarrow a $and $\overrightarrow c $, we get
$\Rightarrow \overrightarrow r = (3\hat i - 2\hat j - 5\hat k) + \lambda 11\hat k$
The equation of AB in Cartesian form is given by the relation
$\dfrac{{x - {x_1}}}{l} = \dfrac{{y - {y_1}}}{m} = \dfrac{{z - {z_1}}}{n}$ where ${x_1},{y_1},{z_1}$are the coordinates of point passing through and $l,m,n$are the direction ratios of the line.
Substituting the values of coordinates of A and direction ratio of AB , we get
$ \Rightarrow \dfrac{{x - 3}}{0} = \dfrac{{y - \left( { - 2} \right)}}{0} = \dfrac{{z - \left( { - 5} \right)}}{{11}}$
$\dfrac{{x - 3}}{0} = \dfrac{{y + 2}}{0} = \dfrac{{z + 5}}{{11}}$
So, this is the required Cartesian equation.
Therefore , the equation of line AB in vector form is $\overrightarrow {AB} = (3\hat i - 2\hat j - 5\hat k) + \lambda 11\hat k$ and in the cartesian form is $\dfrac{{x - 3}}{0} = \dfrac{{y + 2}}{0} = \dfrac{{z + 5}}{{11}}$.
Note: Such similar questions can be solved using the above procedure. If the equation is found in one form whether vector or cartesian it can easily be converted into the other easily , by taking correct values. Attention must be given while substituting the values as it may lead to wrong answers.
Complete step-by-step answer:
Given,
(3,-2,-5)= A(say)
(3,-2,6)= B(say)
Let the line passing through the points A and B be AB.
Now , we will find out the direction ratios of AB which can be found out by taking the difference of one coordinate to the other.
So, The direction ratios of AB will be
X coordinates=$l$ = $3 - 3 = 0$
Y coordinates =$m$ =$ - 2 - ( - 2) = - 2 + 2 = 0$
Z coordinates = $n$ =$6 - ( - 5) = 6 + 5 = 11$
Now , that we know direction ratios of AB ,let us write it in vector form
$\overrightarrow c = 0\hat i + 0\hat j + 11\hat k$
Since, AB passes through A(3,-2,-5), the position vector of A will be written as
$\overrightarrow a = 3\hat i - 2\hat j - 5\hat k$
The equation of AB in vector form is given by the relation
$\overrightarrow r $ = $\overrightarrow a $ + $ \lambda \overrightarrow c $
Substituting the values of $\overrightarrow a $and $\overrightarrow c $, we get
$\Rightarrow \overrightarrow r = (3\hat i - 2\hat j - 5\hat k) + \lambda 11\hat k$
The equation of AB in Cartesian form is given by the relation
$\dfrac{{x - {x_1}}}{l} = \dfrac{{y - {y_1}}}{m} = \dfrac{{z - {z_1}}}{n}$ where ${x_1},{y_1},{z_1}$are the coordinates of point passing through and $l,m,n$are the direction ratios of the line.
Substituting the values of coordinates of A and direction ratio of AB , we get
$ \Rightarrow \dfrac{{x - 3}}{0} = \dfrac{{y - \left( { - 2} \right)}}{0} = \dfrac{{z - \left( { - 5} \right)}}{{11}}$
$\dfrac{{x - 3}}{0} = \dfrac{{y + 2}}{0} = \dfrac{{z + 5}}{{11}}$
So, this is the required Cartesian equation.
Therefore , the equation of line AB in vector form is $\overrightarrow {AB} = (3\hat i - 2\hat j - 5\hat k) + \lambda 11\hat k$ and in the cartesian form is $\dfrac{{x - 3}}{0} = \dfrac{{y + 2}}{0} = \dfrac{{z + 5}}{{11}}$.
Note: Such similar questions can be solved using the above procedure. If the equation is found in one form whether vector or cartesian it can easily be converted into the other easily , by taking correct values. Attention must be given while substituting the values as it may lead to wrong answers.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE