
Find the value of the determinant$\left| \begin{matrix}
\cos 15{}^\circ & \sin 15{}^\circ \\
\sin 75{}^\circ & \cos 75{}^\circ \\
\end{matrix} \right|$
Answer
605.7k+ views
Hint: Expansion of determinant $\left| \begin{matrix}
{{x}_{1}} & {{x}_{2}} \\
{{y}_{1}} & {{y}_{2}} \\
\end{matrix} \right|$ is ${{x}_{1}}{{y}_{2}}-{{y}_{1}}{{x}_{2}}.$ Use trigonometry identity to solve further.
Complete step-by-step answer:
We have the given determinant as
Let us suppose value of this determinant is M
M=$\left| \begin{matrix}
\cos 15{}^\circ & \sin 15{}^\circ \\
\sin 75{}^\circ & \cos 75{}^\circ \\
\end{matrix} \right|$………………..(1)
As, we know the rules of opening a determinant as
If we have any general determinant as
$\Delta =~\left| \begin{matrix}
{{x}_{1}} & {{x}_{2}} \\
{{y}_{1}} & {{y}_{2}} \\
\end{matrix} \right|$ Then we can expand it by following way:
\[\begin{align}
& \Delta =\left( {{x}_{1}}\times {{y}_{2}} \right)-\left( {{x}_{2}}{{y}_{1}} \right) \\
& or \\
& \Delta ={{x}_{1}}{{y}_{2}}-{{x}_{2}}{{y}_{1}}....................\left( 2 \right) \\
\end{align}\]
Now using the above expansion as expressed in equation (2), we can expand determinant given in equation (1) as;
$M=\left| \begin{matrix}
\cos 15{}^\circ & \sin 15{}^\circ \\
\sin 75{}^\circ & \cos 75{}^\circ \\
\end{matrix} \right|$
Where
$\begin{align}
& {{x}_{1}}=\cos 15{}^\circ \\
& {{x}_{2}}=\sin 15{}^\circ \\
& {{y}_{1}}=\sin 75{}^\circ \\
& {{y}_{2}}=\cos 75{}^\circ \\
\end{align}$
Therefore, we can write M as
$M=\cos 15{}^\circ \cos 75{}^\circ -\sin 15{}^\circ \sin 75{}^\circ .......\left( 3 \right)$
Now, we have a trigonometric identity of cos (A+B) as cosA cosB – sinA sinB or vice –versa will also be true.
Hence, equation (3) can be written as
$\begin{align}
& M=\cos 15{}^\circ \cos 75{}^\circ -\sin 15{}^\circ \sin 75{}^\circ \\
& M=\cos (15+75) \\
& M=\cos 90{}^\circ \\
\end{align}$
We know value of $\cos 90{}^\circ $ as 0, hence we can get value of M as
M=0
Hence from equation (1), we get
$\left| \begin{matrix}
\cos 15{}^\circ & \sin 15{}^\circ \\
\sin 75{}^\circ & \cos 75{}^\circ \\
\end{matrix} \right|=0$
Note: One can calculate cos15, sin15, sin75 and cos75, then expand the given determinant.
We can calculate values as;
$\begin{align}
& \cos 15{}^\circ =\cos \left( 45-30 \right)=\cos 45{}^\circ \cos 30{}^\circ +\sin 45{}^\circ \sin 30{}^\circ \\
& \sin 15{}^\circ =\sin \left( 45-30 \right)=\sin 45{}^\circ \cos 30{}^\circ -\sin 30{}^\circ \cos 45{}^\circ \\
& \sin 75{}^\circ =\sin \left( 90-15 \right)=\cos 15{}^\circ \\
& \cos 75{}^\circ =\cos \left( 90-15 \right)=\sin 15{}^\circ \\
\end{align}$
But the above process will be much longer than given in the solution.
One can go wrong while expanding the determinant.
$\left| \begin{matrix}
{{x}_{1}} & {{x}_{2}} \\
{{y}_{1}} & {{y}_{2}} \\
\end{matrix} \right|={{x}_{2}}{{y}_{1}}-{{x}_{1}}{{y}_{2}}$
Which is wrong .Correct expression would be ${{x}_{1}}{{y}_{2}}-{{y}_{1}}{{x}_{2}}$.
{{x}_{1}} & {{x}_{2}} \\
{{y}_{1}} & {{y}_{2}} \\
\end{matrix} \right|$ is ${{x}_{1}}{{y}_{2}}-{{y}_{1}}{{x}_{2}}.$ Use trigonometry identity to solve further.
Complete step-by-step answer:
We have the given determinant as
Let us suppose value of this determinant is M
M=$\left| \begin{matrix}
\cos 15{}^\circ & \sin 15{}^\circ \\
\sin 75{}^\circ & \cos 75{}^\circ \\
\end{matrix} \right|$………………..(1)
As, we know the rules of opening a determinant as
If we have any general determinant as
$\Delta =~\left| \begin{matrix}
{{x}_{1}} & {{x}_{2}} \\
{{y}_{1}} & {{y}_{2}} \\
\end{matrix} \right|$ Then we can expand it by following way:
\[\begin{align}
& \Delta =\left( {{x}_{1}}\times {{y}_{2}} \right)-\left( {{x}_{2}}{{y}_{1}} \right) \\
& or \\
& \Delta ={{x}_{1}}{{y}_{2}}-{{x}_{2}}{{y}_{1}}....................\left( 2 \right) \\
\end{align}\]
Now using the above expansion as expressed in equation (2), we can expand determinant given in equation (1) as;
$M=\left| \begin{matrix}
\cos 15{}^\circ & \sin 15{}^\circ \\
\sin 75{}^\circ & \cos 75{}^\circ \\
\end{matrix} \right|$
Where
$\begin{align}
& {{x}_{1}}=\cos 15{}^\circ \\
& {{x}_{2}}=\sin 15{}^\circ \\
& {{y}_{1}}=\sin 75{}^\circ \\
& {{y}_{2}}=\cos 75{}^\circ \\
\end{align}$
Therefore, we can write M as
$M=\cos 15{}^\circ \cos 75{}^\circ -\sin 15{}^\circ \sin 75{}^\circ .......\left( 3 \right)$
Now, we have a trigonometric identity of cos (A+B) as cosA cosB – sinA sinB or vice –versa will also be true.
Hence, equation (3) can be written as
$\begin{align}
& M=\cos 15{}^\circ \cos 75{}^\circ -\sin 15{}^\circ \sin 75{}^\circ \\
& M=\cos (15+75) \\
& M=\cos 90{}^\circ \\
\end{align}$
We know value of $\cos 90{}^\circ $ as 0, hence we can get value of M as
M=0
Hence from equation (1), we get
$\left| \begin{matrix}
\cos 15{}^\circ & \sin 15{}^\circ \\
\sin 75{}^\circ & \cos 75{}^\circ \\
\end{matrix} \right|=0$
Note: One can calculate cos15, sin15, sin75 and cos75, then expand the given determinant.
We can calculate values as;
$\begin{align}
& \cos 15{}^\circ =\cos \left( 45-30 \right)=\cos 45{}^\circ \cos 30{}^\circ +\sin 45{}^\circ \sin 30{}^\circ \\
& \sin 15{}^\circ =\sin \left( 45-30 \right)=\sin 45{}^\circ \cos 30{}^\circ -\sin 30{}^\circ \cos 45{}^\circ \\
& \sin 75{}^\circ =\sin \left( 90-15 \right)=\cos 15{}^\circ \\
& \cos 75{}^\circ =\cos \left( 90-15 \right)=\sin 15{}^\circ \\
\end{align}$
But the above process will be much longer than given in the solution.
One can go wrong while expanding the determinant.
$\left| \begin{matrix}
{{x}_{1}} & {{x}_{2}} \\
{{y}_{1}} & {{y}_{2}} \\
\end{matrix} \right|={{x}_{2}}{{y}_{1}}-{{x}_{1}}{{y}_{2}}$
Which is wrong .Correct expression would be ${{x}_{1}}{{y}_{2}}-{{y}_{1}}{{x}_{2}}$.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

