
Find the value of tetrahedron V – ABC if V is (1, 1, 1), A is (1, 2, 3), B is (2, 3, 4) and C is (2, 3, - 1).
Answer
589.5k+ views
Hint: We will be using the basic concept of vectors and 3-D geometry to solve the problem. We will be using a scalar triple product of vectors to solve the problem.
Complete step by step answer:
We can draw the tetrahedron V – ABC as below,
Here,
$\begin{align}
& \overset{\to }{\mathop{VA}}\,=\overset{\to }{\mathop{a}}\, \\
& \overset{\to }{\mathop{VB}}\,=\overset{\to }{\mathop{b}}\, \\
& \overset{\to }{\mathop{VC}}\,=\overset{\to }{\mathop{c}}\, \\
\end{align}$
Now, we have to find the volume of the tetrahedron. For this we know that,
The volume of tetrahedron $=\dfrac{1}{3}\left( base\times height \right).......\left( 1 \right)$
Now, we have to find the base of the tetrahedron. Considering $\Delta VAB$ as base. The base area can be written as $base=\dfrac{1}{2}\left| \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\, \right|$
Now, we have to find the height of the tetrahedron considering $\Delta VAB$ as base.
By taking $\Delta OAB$ as base. We can write height as $\left| \overset{\to }{\mathop{c}}\, \right|\cos \theta $, where $\theta $ is the angle between $\left( \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\, \right)\ and\ \overset{\to }{\mathop{c}}\,$.
So,
The volume of tetrahedron $=\dfrac{1}{3}\left( base\ area\times height \right)$
\[\begin{align}
& =\dfrac{1}{3}\left( \dfrac{1}{2}\left| \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\, \right| \right)\left( \left| \overset{\to }{\mathop{c}}\, \right|\cos \theta \right) \\
& =\dfrac{1}{6}\left| \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\, \right|\left| \overset{\to }{\mathop{c}}\, \right|\cos \theta \\
& \text{Using }\overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{B}}\,=\overset{\to }{\mathop{A}}\,\overset{\to }{\mathop{B}}\,\cos \theta \\
& =\dfrac{1}{6}\left( \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{c}}\, \right) \\
\end{align}\]
Now, we know that,
$\begin{align}
& \overset{\to }{\mathop{VA}}\,=\overset{\to }{\mathop{a}}\,=\left( 1-1 \right)\overset{\hat{\ }}{\mathop{i}}\,+\left( 2-1 \right)\overset{\hat{\ }}{\mathop{j}}\,+\left( 3-1 \right)\overset{\hat{\ }}{\mathop{k}}\, \\
& \overset{\to }{\mathop{VB}}\,=\overset{\to }{\mathop{b}}\,=\left( 2-1 \right)\overset{\hat{\ }}{\mathop{i}}\,+\left( 3-1 \right)\overset{\hat{\ }}{\mathop{j}}\,+\left( 4-1 \right)\overset{\hat{\ }}{\mathop{k}}\, \\
& \overset{\to }{\mathop{VC}}\,=\overset{\to }{\mathop{c}}\,=\left( 2-1 \right)\overset{\hat{\ }}{\mathop{i}}\,+\left( 3-1 \right)\overset{\hat{\ }}{\mathop{j}}\,+\left( -1-1 \right)\overset{\hat{\ }}{\mathop{k}}\, \\
\end{align}$
Now, we that the vector triple product of three vectors,
$\begin{align}
& \overset{\to }{\mathop{a}}\,={{x}_{1}}\overset{\hat{\ }}{\mathop{i}}\,+{{y}_{1}}\overset{\hat{\ }}{\mathop{j}}\,+{{z}_{1}}\overset{\hat{\ }}{\mathop{k}}\, \\
& \overset{\to }{\mathop{b}}\,={{x}_{2}}\overset{\hat{\ }}{\mathop{i}}\,+{{y}_{2}}\overset{\hat{\ }}{\mathop{j}}\,+{{z}_{2}}\overset{\hat{\ }}{\mathop{k}}\, \\
& \overset{\to }{\mathop{c}}\,={{x}_{3}}\overset{\hat{\ }}{\mathop{i}}\,+{{y}_{3}}\overset{\hat{\ }}{\mathop{j}}\,+{{z}_{3}}\overset{\hat{\ }}{\mathop{k}}\, \\
\end{align}$
It can be solved as a matrix. For example,
\[\left( \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{c}}\, \right)=\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
{{x}_{3}} & {{y}_{3}} & {{z}_{3}} \\
\end{matrix} \right|\]
So, using this we can find the volume of tetrahedron as,
\[\dfrac{1}{6}\left| \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{c}}\, \right|=\dfrac{1}{6}\left| \begin{matrix}
0 & 1 & 2 \\
1 & 2 & 3 \\
1 & 2 & -2 \\
\end{matrix} \right|\]
Now, we can expand the matrix along R as,
$\begin{align}
& 0\left( -4-6 \right)-1\left( -2-3 \right)+2\left( 2-2 \right) \\
& -10-1\left( -5 \right)+2\left( 0 \right) \\
& -10+5 \\
& -5 \\
\end{align}$
So, the volume of tetrahedron is,
$\begin{align}
& =\dfrac{1}{6}\left| -5 \right| \\
& =\dfrac{5}{6} \\
\end{align}$
Hence, $\dfrac{5}{6}$ is the volume of the given tetrahedron.
Note: The question is calculation intensive. It is advised to do the calculation carefully also remembering some formula like that of finding volume of tetrahedron simplifies the problem to a great extent.
Volume of tetrahedron \[=\dfrac{1}{2}\left( \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{c}}\, \right)\]
Complete step by step answer:
We can draw the tetrahedron V – ABC as below,
Here,
$\begin{align}
& \overset{\to }{\mathop{VA}}\,=\overset{\to }{\mathop{a}}\, \\
& \overset{\to }{\mathop{VB}}\,=\overset{\to }{\mathop{b}}\, \\
& \overset{\to }{\mathop{VC}}\,=\overset{\to }{\mathop{c}}\, \\
\end{align}$
Now, we have to find the volume of the tetrahedron. For this we know that,
The volume of tetrahedron $=\dfrac{1}{3}\left( base\times height \right).......\left( 1 \right)$
Now, we have to find the base of the tetrahedron. Considering $\Delta VAB$ as base. The base area can be written as $base=\dfrac{1}{2}\left| \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\, \right|$
Now, we have to find the height of the tetrahedron considering $\Delta VAB$ as base.
By taking $\Delta OAB$ as base. We can write height as $\left| \overset{\to }{\mathop{c}}\, \right|\cos \theta $, where $\theta $ is the angle between $\left( \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\, \right)\ and\ \overset{\to }{\mathop{c}}\,$.
So,
The volume of tetrahedron $=\dfrac{1}{3}\left( base\ area\times height \right)$
\[\begin{align}
& =\dfrac{1}{3}\left( \dfrac{1}{2}\left| \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\, \right| \right)\left( \left| \overset{\to }{\mathop{c}}\, \right|\cos \theta \right) \\
& =\dfrac{1}{6}\left| \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\, \right|\left| \overset{\to }{\mathop{c}}\, \right|\cos \theta \\
& \text{Using }\overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{B}}\,=\overset{\to }{\mathop{A}}\,\overset{\to }{\mathop{B}}\,\cos \theta \\
& =\dfrac{1}{6}\left( \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{c}}\, \right) \\
\end{align}\]
Now, we know that,
$\begin{align}
& \overset{\to }{\mathop{VA}}\,=\overset{\to }{\mathop{a}}\,=\left( 1-1 \right)\overset{\hat{\ }}{\mathop{i}}\,+\left( 2-1 \right)\overset{\hat{\ }}{\mathop{j}}\,+\left( 3-1 \right)\overset{\hat{\ }}{\mathop{k}}\, \\
& \overset{\to }{\mathop{VB}}\,=\overset{\to }{\mathop{b}}\,=\left( 2-1 \right)\overset{\hat{\ }}{\mathop{i}}\,+\left( 3-1 \right)\overset{\hat{\ }}{\mathop{j}}\,+\left( 4-1 \right)\overset{\hat{\ }}{\mathop{k}}\, \\
& \overset{\to }{\mathop{VC}}\,=\overset{\to }{\mathop{c}}\,=\left( 2-1 \right)\overset{\hat{\ }}{\mathop{i}}\,+\left( 3-1 \right)\overset{\hat{\ }}{\mathop{j}}\,+\left( -1-1 \right)\overset{\hat{\ }}{\mathop{k}}\, \\
\end{align}$
Now, we that the vector triple product of three vectors,
$\begin{align}
& \overset{\to }{\mathop{a}}\,={{x}_{1}}\overset{\hat{\ }}{\mathop{i}}\,+{{y}_{1}}\overset{\hat{\ }}{\mathop{j}}\,+{{z}_{1}}\overset{\hat{\ }}{\mathop{k}}\, \\
& \overset{\to }{\mathop{b}}\,={{x}_{2}}\overset{\hat{\ }}{\mathop{i}}\,+{{y}_{2}}\overset{\hat{\ }}{\mathop{j}}\,+{{z}_{2}}\overset{\hat{\ }}{\mathop{k}}\, \\
& \overset{\to }{\mathop{c}}\,={{x}_{3}}\overset{\hat{\ }}{\mathop{i}}\,+{{y}_{3}}\overset{\hat{\ }}{\mathop{j}}\,+{{z}_{3}}\overset{\hat{\ }}{\mathop{k}}\, \\
\end{align}$
It can be solved as a matrix. For example,
\[\left( \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{c}}\, \right)=\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
{{x}_{3}} & {{y}_{3}} & {{z}_{3}} \\
\end{matrix} \right|\]
So, using this we can find the volume of tetrahedron as,
\[\dfrac{1}{6}\left| \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{c}}\, \right|=\dfrac{1}{6}\left| \begin{matrix}
0 & 1 & 2 \\
1 & 2 & 3 \\
1 & 2 & -2 \\
\end{matrix} \right|\]
Now, we can expand the matrix along R as,
$\begin{align}
& 0\left( -4-6 \right)-1\left( -2-3 \right)+2\left( 2-2 \right) \\
& -10-1\left( -5 \right)+2\left( 0 \right) \\
& -10+5 \\
& -5 \\
\end{align}$
So, the volume of tetrahedron is,
$\begin{align}
& =\dfrac{1}{6}\left| -5 \right| \\
& =\dfrac{5}{6} \\
\end{align}$
Hence, $\dfrac{5}{6}$ is the volume of the given tetrahedron.
Note: The question is calculation intensive. It is advised to do the calculation carefully also remembering some formula like that of finding volume of tetrahedron simplifies the problem to a great extent.
Volume of tetrahedron \[=\dfrac{1}{2}\left( \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{c}}\, \right)\]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What happens if Mutations are not corrected class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

