
Find the value of ${{\sin }^{-1}}\left( \sin 10 \right)$ is:
A) 10
B) $10-3\pi $
C) $3\pi -10$
D) -10
Answer
612k+ views
Hint: Take $y={{\sin }^{-1}}\left( \sin 10 \right)$ and take sin of both sides of the equation and you will get $\sin 10=\sin y$ and then we use general solution of $\sin y=\sin x$ : $y=2n\pi +x$ and get a value of y which lie in the range $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ as range of ${{\sin }^{-1}}\left( \sin x \right)$ is $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$.
Complete step-by-step answer:
Let us assume ${{\sin }^{-1}}\left( \sin 10 \right)=x$
We know that the range of $f\left( x \right)={{\sin }^{-1}}x$ is $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$.
Here ${{\sin }^{-1}}\left( \sin 10 \right)=x$ so $x\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$.
Taking sin of both sides of equations, we will get
$\Rightarrow \sin 10=\sin x$.
We know the general solution for the equation. “$\sin y=\sin x$ “ is $y=x+2\kappa \pi $ , where $\kappa $ is any integer.
So, the general solution for $\sin x=\sin 10$ will be $x=10+2n\pi $ , where n is any integer.
We have to find the value of x such that $x={{\sin }^{-1}}\left( \sin 10 \right)$ and $x\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ .
For $x={{\sin }^{-1}}\left( \sin 10 \right)$ , we have got $x=10+2n\pi $ , where ‘n’ is any integer and we know that x can belong to $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$.
So, we have to find the value of “$10+2n\pi $ “ which lies in $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$, where ‘n’ is any integer.
$\sin \theta =1$ .
As $\pi =3.14,\dfrac{\pi }{2}=1.57$
So, $\left( 2n\pi +10 \right)$ should belong to $\left[ -1.57,1.57 \right]$
We know $\pi =3.14$
So, $3\pi =3\left( 3.14 \right)=9.42$
And $4\pi =4\left( 3.14 \right)=12.56$ .
So, 10 will lie between $3\pi $ and $4\pi $
i.e. $3\pi <10<4\pi $ .
we know $\sin 10=\sin \left( 2n\pi +10 \right),n\in I$
Let us take $n=-1$
$\begin{align}
& 2n\pi +10=10-2\pi \\
& =10-2\left( 3.14 \right) \\
& =10-6.28 \\
& =3.72 \\
\end{align}$
Hence, $\sin \left( 10 \right)=\sin \left( 3.72 \right)=\sin \left( 10-2\pi \right)$ ……………….(1)
But 3.72 also don’t lie between $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ i.e. $\left( -1.57,1.57 \right)$
Now, we know that $\sin \left( \pi -\theta \right)=\sin \theta $ .
Taking $\theta =\left( 10-2\pi \right)$ , we will get
$\begin{align}
& \sin \left( \pi -\left( 10-2\pi \right) \right)=\sin \left( 10-2\pi \right) \\
& \Rightarrow \sin \left( \pi -10+2\pi \right)=\sin \left( 10-2\pi \right) \\
\end{align}$
$\Rightarrow \sin \left( 3\pi -10 \right)=\sin \left( 10-2\pi \right)$ ………….(2)
From eq (1) and (2)
$\sin \left( 10 \right)=\sin \left( 3\pi -10 \right)$
And
$\begin{align}
& 3\pi -10=3\left( 3.14 \right)-10 \\
& =9.42-10 \\
& =0.58 \\
& 0.58\in \left[ -1.57,1.57 \right] \\
& \Rightarrow \left( 3\pi -10 \right)\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] \\
\end{align}$
So, we have got an angle $\left( 3\pi -10 \right)$ such that $\sin \left( 3\pi -10 \right)=\sin 10$ and $3\pi -10\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ .
Hence the value of ${{\sin }^{-1}}\left( \sin 10 \right)=\left( 3\pi -10 \right)$ and option (C) is the correct answer.
Note: Students can do mistake by directly taking ${{\sin }^{-1}}\left( \sin 10 \right)=10$ , but be careful that range of $y={{\sin }^{-1}}\left( \sin x \right)$ will be $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ and 10 doesn’t belong to this range.
Complete step-by-step answer:
Let us assume ${{\sin }^{-1}}\left( \sin 10 \right)=x$
We know that the range of $f\left( x \right)={{\sin }^{-1}}x$ is $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$.
Here ${{\sin }^{-1}}\left( \sin 10 \right)=x$ so $x\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$.
Taking sin of both sides of equations, we will get
$\Rightarrow \sin 10=\sin x$.
We know the general solution for the equation. “$\sin y=\sin x$ “ is $y=x+2\kappa \pi $ , where $\kappa $ is any integer.
So, the general solution for $\sin x=\sin 10$ will be $x=10+2n\pi $ , where n is any integer.
We have to find the value of x such that $x={{\sin }^{-1}}\left( \sin 10 \right)$ and $x\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ .
For $x={{\sin }^{-1}}\left( \sin 10 \right)$ , we have got $x=10+2n\pi $ , where ‘n’ is any integer and we know that x can belong to $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$.
So, we have to find the value of “$10+2n\pi $ “ which lies in $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$, where ‘n’ is any integer.
$\sin \theta =1$ .
As $\pi =3.14,\dfrac{\pi }{2}=1.57$
So, $\left( 2n\pi +10 \right)$ should belong to $\left[ -1.57,1.57 \right]$
We know $\pi =3.14$
So, $3\pi =3\left( 3.14 \right)=9.42$
And $4\pi =4\left( 3.14 \right)=12.56$ .
So, 10 will lie between $3\pi $ and $4\pi $
i.e. $3\pi <10<4\pi $ .
we know $\sin 10=\sin \left( 2n\pi +10 \right),n\in I$
Let us take $n=-1$
$\begin{align}
& 2n\pi +10=10-2\pi \\
& =10-2\left( 3.14 \right) \\
& =10-6.28 \\
& =3.72 \\
\end{align}$
Hence, $\sin \left( 10 \right)=\sin \left( 3.72 \right)=\sin \left( 10-2\pi \right)$ ……………….(1)
But 3.72 also don’t lie between $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ i.e. $\left( -1.57,1.57 \right)$
Now, we know that $\sin \left( \pi -\theta \right)=\sin \theta $ .
Taking $\theta =\left( 10-2\pi \right)$ , we will get
$\begin{align}
& \sin \left( \pi -\left( 10-2\pi \right) \right)=\sin \left( 10-2\pi \right) \\
& \Rightarrow \sin \left( \pi -10+2\pi \right)=\sin \left( 10-2\pi \right) \\
\end{align}$
$\Rightarrow \sin \left( 3\pi -10 \right)=\sin \left( 10-2\pi \right)$ ………….(2)
From eq (1) and (2)
$\sin \left( 10 \right)=\sin \left( 3\pi -10 \right)$
And
$\begin{align}
& 3\pi -10=3\left( 3.14 \right)-10 \\
& =9.42-10 \\
& =0.58 \\
& 0.58\in \left[ -1.57,1.57 \right] \\
& \Rightarrow \left( 3\pi -10 \right)\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] \\
\end{align}$
So, we have got an angle $\left( 3\pi -10 \right)$ such that $\sin \left( 3\pi -10 \right)=\sin 10$ and $3\pi -10\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ .
Hence the value of ${{\sin }^{-1}}\left( \sin 10 \right)=\left( 3\pi -10 \right)$ and option (C) is the correct answer.
Note: Students can do mistake by directly taking ${{\sin }^{-1}}\left( \sin 10 \right)=10$ , but be careful that range of $y={{\sin }^{-1}}\left( \sin x \right)$ will be $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ and 10 doesn’t belong to this range.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

