
Find the value of ${{\sin }^{-1}}\left( \sin 10 \right)$ is:
A) 10
B) $10-3\pi $
C) $3\pi -10$
D) -10
Answer
598.2k+ views
Hint: Take $y={{\sin }^{-1}}\left( \sin 10 \right)$ and take sin of both sides of the equation and you will get $\sin 10=\sin y$ and then we use general solution of $\sin y=\sin x$ : $y=2n\pi +x$ and get a value of y which lie in the range $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ as range of ${{\sin }^{-1}}\left( \sin x \right)$ is $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$.
Complete step-by-step answer:
Let us assume ${{\sin }^{-1}}\left( \sin 10 \right)=x$
We know that the range of $f\left( x \right)={{\sin }^{-1}}x$ is $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$.
Here ${{\sin }^{-1}}\left( \sin 10 \right)=x$ so $x\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$.
Taking sin of both sides of equations, we will get
$\Rightarrow \sin 10=\sin x$.
We know the general solution for the equation. “$\sin y=\sin x$ “ is $y=x+2\kappa \pi $ , where $\kappa $ is any integer.
So, the general solution for $\sin x=\sin 10$ will be $x=10+2n\pi $ , where n is any integer.
We have to find the value of x such that $x={{\sin }^{-1}}\left( \sin 10 \right)$ and $x\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ .
For $x={{\sin }^{-1}}\left( \sin 10 \right)$ , we have got $x=10+2n\pi $ , where ‘n’ is any integer and we know that x can belong to $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$.
So, we have to find the value of “$10+2n\pi $ “ which lies in $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$, where ‘n’ is any integer.
$\sin \theta =1$ .
As $\pi =3.14,\dfrac{\pi }{2}=1.57$
So, $\left( 2n\pi +10 \right)$ should belong to $\left[ -1.57,1.57 \right]$
We know $\pi =3.14$
So, $3\pi =3\left( 3.14 \right)=9.42$
And $4\pi =4\left( 3.14 \right)=12.56$ .
So, 10 will lie between $3\pi $ and $4\pi $
i.e. $3\pi <10<4\pi $ .
we know $\sin 10=\sin \left( 2n\pi +10 \right),n\in I$
Let us take $n=-1$
$\begin{align}
& 2n\pi +10=10-2\pi \\
& =10-2\left( 3.14 \right) \\
& =10-6.28 \\
& =3.72 \\
\end{align}$
Hence, $\sin \left( 10 \right)=\sin \left( 3.72 \right)=\sin \left( 10-2\pi \right)$ ……………….(1)
But 3.72 also don’t lie between $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ i.e. $\left( -1.57,1.57 \right)$
Now, we know that $\sin \left( \pi -\theta \right)=\sin \theta $ .
Taking $\theta =\left( 10-2\pi \right)$ , we will get
$\begin{align}
& \sin \left( \pi -\left( 10-2\pi \right) \right)=\sin \left( 10-2\pi \right) \\
& \Rightarrow \sin \left( \pi -10+2\pi \right)=\sin \left( 10-2\pi \right) \\
\end{align}$
$\Rightarrow \sin \left( 3\pi -10 \right)=\sin \left( 10-2\pi \right)$ ………….(2)
From eq (1) and (2)
$\sin \left( 10 \right)=\sin \left( 3\pi -10 \right)$
And
$\begin{align}
& 3\pi -10=3\left( 3.14 \right)-10 \\
& =9.42-10 \\
& =0.58 \\
& 0.58\in \left[ -1.57,1.57 \right] \\
& \Rightarrow \left( 3\pi -10 \right)\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] \\
\end{align}$
So, we have got an angle $\left( 3\pi -10 \right)$ such that $\sin \left( 3\pi -10 \right)=\sin 10$ and $3\pi -10\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ .
Hence the value of ${{\sin }^{-1}}\left( \sin 10 \right)=\left( 3\pi -10 \right)$ and option (C) is the correct answer.
Note: Students can do mistake by directly taking ${{\sin }^{-1}}\left( \sin 10 \right)=10$ , but be careful that range of $y={{\sin }^{-1}}\left( \sin x \right)$ will be $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ and 10 doesn’t belong to this range.
Complete step-by-step answer:
Let us assume ${{\sin }^{-1}}\left( \sin 10 \right)=x$
We know that the range of $f\left( x \right)={{\sin }^{-1}}x$ is $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$.
Here ${{\sin }^{-1}}\left( \sin 10 \right)=x$ so $x\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$.
Taking sin of both sides of equations, we will get
$\Rightarrow \sin 10=\sin x$.
We know the general solution for the equation. “$\sin y=\sin x$ “ is $y=x+2\kappa \pi $ , where $\kappa $ is any integer.
So, the general solution for $\sin x=\sin 10$ will be $x=10+2n\pi $ , where n is any integer.
We have to find the value of x such that $x={{\sin }^{-1}}\left( \sin 10 \right)$ and $x\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ .
For $x={{\sin }^{-1}}\left( \sin 10 \right)$ , we have got $x=10+2n\pi $ , where ‘n’ is any integer and we know that x can belong to $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$.
So, we have to find the value of “$10+2n\pi $ “ which lies in $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$, where ‘n’ is any integer.
$\sin \theta =1$ .
As $\pi =3.14,\dfrac{\pi }{2}=1.57$
So, $\left( 2n\pi +10 \right)$ should belong to $\left[ -1.57,1.57 \right]$
We know $\pi =3.14$
So, $3\pi =3\left( 3.14 \right)=9.42$
And $4\pi =4\left( 3.14 \right)=12.56$ .
So, 10 will lie between $3\pi $ and $4\pi $
i.e. $3\pi <10<4\pi $ .
we know $\sin 10=\sin \left( 2n\pi +10 \right),n\in I$
Let us take $n=-1$
$\begin{align}
& 2n\pi +10=10-2\pi \\
& =10-2\left( 3.14 \right) \\
& =10-6.28 \\
& =3.72 \\
\end{align}$
Hence, $\sin \left( 10 \right)=\sin \left( 3.72 \right)=\sin \left( 10-2\pi \right)$ ……………….(1)
But 3.72 also don’t lie between $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ i.e. $\left( -1.57,1.57 \right)$
Now, we know that $\sin \left( \pi -\theta \right)=\sin \theta $ .
Taking $\theta =\left( 10-2\pi \right)$ , we will get
$\begin{align}
& \sin \left( \pi -\left( 10-2\pi \right) \right)=\sin \left( 10-2\pi \right) \\
& \Rightarrow \sin \left( \pi -10+2\pi \right)=\sin \left( 10-2\pi \right) \\
\end{align}$
$\Rightarrow \sin \left( 3\pi -10 \right)=\sin \left( 10-2\pi \right)$ ………….(2)
From eq (1) and (2)
$\sin \left( 10 \right)=\sin \left( 3\pi -10 \right)$
And
$\begin{align}
& 3\pi -10=3\left( 3.14 \right)-10 \\
& =9.42-10 \\
& =0.58 \\
& 0.58\in \left[ -1.57,1.57 \right] \\
& \Rightarrow \left( 3\pi -10 \right)\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] \\
\end{align}$
So, we have got an angle $\left( 3\pi -10 \right)$ such that $\sin \left( 3\pi -10 \right)=\sin 10$ and $3\pi -10\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ .
Hence the value of ${{\sin }^{-1}}\left( \sin 10 \right)=\left( 3\pi -10 \right)$ and option (C) is the correct answer.
Note: Students can do mistake by directly taking ${{\sin }^{-1}}\left( \sin 10 \right)=10$ , but be careful that range of $y={{\sin }^{-1}}\left( \sin x \right)$ will be $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ and 10 doesn’t belong to this range.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

