
Find the value of ${\sin ^{ - 1}}\{ \sin ( - {600^ \circ })\} $
Answer
607.2k+ views
Hint: To solve this problem we need to have basic knowledge about the trigonometric values, trigonometric identities and inverse trigonometric identities because the question here belongs to the inverse trigonometry concept.
Complete step-by-step answer:
Before solving this problem let us consider the given term as P.
Then $P = {\sin ^{ - 1}}\{ \sin ( - {600^ \circ })\} $
On using the trigonometric identity $\sin ( - \theta ) = - \sin \theta $ we can rewrite P as
$ \Rightarrow {\sin ^{ - 1}}\{ - \sin ({600^ \circ })\} $
$ \Rightarrow {\sin ^{ - 1}}\{ - \sin ({360^ \circ } \times 2 - {120^ \circ })\} $ $[\because {360^ \circ } = 2\pi ]$
$ \Rightarrow {\sin ^{ - 1}}\{ - \sin (2\pi - {120^ \circ })\} $
Now by using the trigonometric identity $\sin (2\pi - A) = \sin ( - A)$ we can rewrite the above term as
$ \Rightarrow {\sin ^{ - 1}}\{ - \sin ( - {120^ \circ })\} $
Again by using the trigonometric identity $\sin ( - \theta ) = - \sin \theta $ we can rewrite the term as $
\Rightarrow {\sin ^{ - 1}}\{ - ( - \sin {120^ \circ })\} \\
\Rightarrow {\sin ^{ - 1}}\{ \sin ({120^ \circ })\} \\
$
Now this can also be written as
$ \Rightarrow {\sin ^{ - 1}}\{ \sin ({180^ \circ } - {60^ \circ })\} $
$ \Rightarrow {\sin ^{ - 1}}\{ \sin ({60^ \circ })\} $
On using the inverse trigonometric identity ${\sin ^{ - 1}}\{ \sin x\} = x$ we can rewrite the term as
$
\Rightarrow {60^ \circ } \\
\therefore P = {60^ \circ } \\
$
Hence the value of ${\sin ^{ - 1}}\{ \sin ( - {600^ \circ })\} = {60^ \circ }$
Note: The above solution is a step-by-step process of finding the value of a given term where we have included the trigonometric identities and inverse trigonometric identities to solve the question. This can also be done in a simple way, as $\sin ( - {600^ \circ }) = \sin ( - {600^ \circ } + {720^ \circ }) = \sin ({120^ \circ }) = \sin ({60^ \circ })$
Here finally we have found the theta value so the answer is $\theta = {60^ \circ }$.
Complete step-by-step answer:
Before solving this problem let us consider the given term as P.
Then $P = {\sin ^{ - 1}}\{ \sin ( - {600^ \circ })\} $
On using the trigonometric identity $\sin ( - \theta ) = - \sin \theta $ we can rewrite P as
$ \Rightarrow {\sin ^{ - 1}}\{ - \sin ({600^ \circ })\} $
$ \Rightarrow {\sin ^{ - 1}}\{ - \sin ({360^ \circ } \times 2 - {120^ \circ })\} $ $[\because {360^ \circ } = 2\pi ]$
$ \Rightarrow {\sin ^{ - 1}}\{ - \sin (2\pi - {120^ \circ })\} $
Now by using the trigonometric identity $\sin (2\pi - A) = \sin ( - A)$ we can rewrite the above term as
$ \Rightarrow {\sin ^{ - 1}}\{ - \sin ( - {120^ \circ })\} $
Again by using the trigonometric identity $\sin ( - \theta ) = - \sin \theta $ we can rewrite the term as $
\Rightarrow {\sin ^{ - 1}}\{ - ( - \sin {120^ \circ })\} \\
\Rightarrow {\sin ^{ - 1}}\{ \sin ({120^ \circ })\} \\
$
Now this can also be written as
$ \Rightarrow {\sin ^{ - 1}}\{ \sin ({180^ \circ } - {60^ \circ })\} $
$ \Rightarrow {\sin ^{ - 1}}\{ \sin ({60^ \circ })\} $
On using the inverse trigonometric identity ${\sin ^{ - 1}}\{ \sin x\} = x$ we can rewrite the term as
$
\Rightarrow {60^ \circ } \\
\therefore P = {60^ \circ } \\
$
Hence the value of ${\sin ^{ - 1}}\{ \sin ( - {600^ \circ })\} = {60^ \circ }$
Note: The above solution is a step-by-step process of finding the value of a given term where we have included the trigonometric identities and inverse trigonometric identities to solve the question. This can also be done in a simple way, as $\sin ( - {600^ \circ }) = \sin ( - {600^ \circ } + {720^ \circ }) = \sin ({120^ \circ }) = \sin ({60^ \circ })$
Here finally we have found the theta value so the answer is $\theta = {60^ \circ }$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

