
Find the value of $\int {{e^{2x}}.\sin (3x + 1) dx.} $
Answer
589.2k+ views
Hint: Here in this question we have to find the derivatives of the given function. We have to find the derivative of the function in two parts first is ${e^{2x}} $ and the second part is $\sin (3x + 1) $. Solve the question using the integrations by parts method of derivative.
Complete step-by-step answer:
We have
= $\int {{e^{2x}}.\sin (3x + 1)dx.} $
Now derive the function by using integration by parts
The formula of integration by parts is
$\int {u.vdx = u\int {vdx - \int {{u^,}(\int {vdx)dx} } } } $
Here $u = {e^{2x}},v = \sin (3x + 1)$
Do the derivative using the above formula
$ = \sin (3x + 1)\int {{e^{2x}}dx - \int {\{ \dfrac{d}{{dx}}\sin (3x + 1)\int {{e^{2x}}dx\} dx} } } $
Do the derivative of the function
$ = \dfrac{{\sin (3x + 1).{e^{2x}}}}{2} - \int {3\cos (3x + 1).\dfrac{{{e^{2x}}}}{2}dx} $
Separate the numeral part
$ = \dfrac{{{e^{2x}}\sin (3x + 1)}}{2} - \dfrac{3}{2}\int {{e^{2x}}\cos (3x + 1)dx} $
We have again two parts in the second parts which is
1-${e^{2x}} $
2-$\cos (3x + 1) $
Do the derivative of second part using the integration by parts
$ = \dfrac{{{e^{2x}}\sin (3x + 1)}}{2} - \dfrac{3}{2}[\cos (3x + 1)\int {{e^{2x}}dx - \int {\{ \dfrac{d}{{dx}}\cos (3x + 1)\int {{e^{2x}}dx\} dx]} } } $
Do the derivative of only second part write the first part same as written above
\[ = \dfrac{{{e^{2x}}\sin (3x + 1)}}{2} - \dfrac{3}{2}[\cos (3x + 1)\dfrac{{{e^{2x}}}}{2} - \int { - 3\sin (3x + 1).\dfrac{{{e^{2x}}}}{2}dx} ] + C\]
\[ = \dfrac{{{e^{2x}}\sin (3x + 1)}}{2} - \dfrac{3}{4}{e^{2x}}\cos (3x + 1) - \dfrac{9}{4}\int {{e^{2x}}\sin (3x + 1)dx + C} \]
$I = \dfrac{{{e^{2x}}\sin (3x + 1)}}{2} - \dfrac{3}{4}{e^{2x}}\cos (3x + 1) - \dfrac{9}{4}I + C$
In the above equation we put
$\int {{e^{2x}}.\sin (3x + 1)dx.}$ $= I$
Now equalizing the equation, we get
$\dfrac{{13}}{4}I = \dfrac{{{e^{2x}}\sin (3x + 1)}}{2} - \dfrac{{3{e^{2x}}\cos (3x + 1)}}{4} + C$
$I = \dfrac{{2{e^{2x}}\sin (3x + 1)}}{{13}} - \dfrac{{3{e^{2x}}\cos (3x + 1)}}{{13}} + C$
Hence, we have the derivative of our function given in the question
$\int {{e^{2x}}.\sin (3x + 1)dx.} $$ = \dfrac{2}{{13}}{e^{2x}}\sin (3x + 1) - \dfrac{3}{{13}}{e^{2x}}\cos (3x + 1)$
Note: Here in this question use the integration by parts method. Solve the function step by step. Students mostly make mistakes while doing the derivative of ${e^{2x}} $. When there is more than one function in the question, first separate the parts of the functions and then do the derivative of the function. Do not get confused between the power and the real numbers. Always write down the C at the end of the function when you did the derivative where c means a consent part of the integration.at the end separate the fractional part and the non-fractional part.
Complete step-by-step answer:
We have
= $\int {{e^{2x}}.\sin (3x + 1)dx.} $
Now derive the function by using integration by parts
The formula of integration by parts is
$\int {u.vdx = u\int {vdx - \int {{u^,}(\int {vdx)dx} } } } $
Here $u = {e^{2x}},v = \sin (3x + 1)$
Do the derivative using the above formula
$ = \sin (3x + 1)\int {{e^{2x}}dx - \int {\{ \dfrac{d}{{dx}}\sin (3x + 1)\int {{e^{2x}}dx\} dx} } } $
Do the derivative of the function
$ = \dfrac{{\sin (3x + 1).{e^{2x}}}}{2} - \int {3\cos (3x + 1).\dfrac{{{e^{2x}}}}{2}dx} $
Separate the numeral part
$ = \dfrac{{{e^{2x}}\sin (3x + 1)}}{2} - \dfrac{3}{2}\int {{e^{2x}}\cos (3x + 1)dx} $
We have again two parts in the second parts which is
1-${e^{2x}} $
2-$\cos (3x + 1) $
Do the derivative of second part using the integration by parts
$ = \dfrac{{{e^{2x}}\sin (3x + 1)}}{2} - \dfrac{3}{2}[\cos (3x + 1)\int {{e^{2x}}dx - \int {\{ \dfrac{d}{{dx}}\cos (3x + 1)\int {{e^{2x}}dx\} dx]} } } $
Do the derivative of only second part write the first part same as written above
\[ = \dfrac{{{e^{2x}}\sin (3x + 1)}}{2} - \dfrac{3}{2}[\cos (3x + 1)\dfrac{{{e^{2x}}}}{2} - \int { - 3\sin (3x + 1).\dfrac{{{e^{2x}}}}{2}dx} ] + C\]
\[ = \dfrac{{{e^{2x}}\sin (3x + 1)}}{2} - \dfrac{3}{4}{e^{2x}}\cos (3x + 1) - \dfrac{9}{4}\int {{e^{2x}}\sin (3x + 1)dx + C} \]
$I = \dfrac{{{e^{2x}}\sin (3x + 1)}}{2} - \dfrac{3}{4}{e^{2x}}\cos (3x + 1) - \dfrac{9}{4}I + C$
In the above equation we put
$\int {{e^{2x}}.\sin (3x + 1)dx.}$ $= I$
Now equalizing the equation, we get
$\dfrac{{13}}{4}I = \dfrac{{{e^{2x}}\sin (3x + 1)}}{2} - \dfrac{{3{e^{2x}}\cos (3x + 1)}}{4} + C$
$I = \dfrac{{2{e^{2x}}\sin (3x + 1)}}{{13}} - \dfrac{{3{e^{2x}}\cos (3x + 1)}}{{13}} + C$
Hence, we have the derivative of our function given in the question
$\int {{e^{2x}}.\sin (3x + 1)dx.} $$ = \dfrac{2}{{13}}{e^{2x}}\sin (3x + 1) - \dfrac{3}{{13}}{e^{2x}}\cos (3x + 1)$
Note: Here in this question use the integration by parts method. Solve the function step by step. Students mostly make mistakes while doing the derivative of ${e^{2x}} $. When there is more than one function in the question, first separate the parts of the functions and then do the derivative of the function. Do not get confused between the power and the real numbers. Always write down the C at the end of the function when you did the derivative where c means a consent part of the integration.at the end separate the fractional part and the non-fractional part.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

