
Find the torque of a force $ 7\vec{i}+3\vec{j}-5\vec{k} $ about the origin. The force acts on the particle whose position vector is $ \vec{i}+\vec{j}+\vec{k} $
Answer
538.8k+ views
Hint: Torque can be calculated by cross product of position vector and force. In terms of determinant, we can find the cross product using formula
$ {a}\times {b=}\left| \begin{align}
& {i j k} \\
& {{{a}}_{1}}{ }{{{a}}_{2}}{ }{{{a}}_{3}} \\
& {{{b}}_{1}}{ }{{{b}}_{2}}{ }{{{b}}_{3}} \\
\end{align} \right| $
This determinant is computed using cofactor expansion. It expands to
${a}\times {b} =\left( {{{a}}_{2}}{{{b}}_{3}}-{{{a}}_{3}}{{{b}}_{2}} \right){i}-\left( {{{a}}_{1}}{{{b}}_{3}}-{{{a}}_{3}}{{{b}}_{1}} \right){j}+\left( {{{a}}_{1}}{{{b}}_{2}}-{{{a}}_{2}}{{{b}}_{1}} \right){k} $
Formula used: $ \vec{\tau }=\vec{r}\times \vec{F} $ Torque is given by cross product of perpendicular distance and force.
Complete Step by step solution
Given:
$ F=7\vec{i}+3\vec{j}-5\vec{k} $
$ \vec{r}=\vec{i}+\vec{j}+\vec{k} $ $ $
We know that torque $ \vec{\tau } $ is given by:
$ \vec{\tau }=\vec{r}\times \vec{F} $
$ =\left( \begin{matrix}
{\vec{i}} & {\vec{j}} & {\vec{k}} \\
1 & 1 & 1 \\
7 & 3 & -5 \\
\end{matrix} \right) $
$ \begin{align}
& =\vec{i}\left[ -5-3 \right]-\vec{j}\left[ -5-7 \right]+\vec{k}\left[ 3-7 \right] \\
& =-8\vec{i}+12\vec{j}-4\vec{k} \\
\end{align} $
Additional Information
Torque is the rotational equivalent of linear force. It's S.I. unit is $ {N m} $ (Newton meter). In S.I. base unit, its unit is $ {kg }{{{m}}^{2}}{{{s}}^{-2}} $ . $ $
Its dimension is given by $ {M}{{{L}}^{2}}{{{T}}^{-2}} $ .
The magnitude of the torque of a rigid body depends up on three factors:
Force applied
Lever arm vector connecting the point about which the torque is being measured to the point of force application.
Angle between force and lever arm vectors.
The net torque on a body determines the rate of change of the body's angular momentum.
$ \overrightarrow{{ }\!\!\tau\!\!{ }}=\overrightarrow{\frac{\alpha L}{\alpha t}} $
Where,
$ \alpha = $ angular momentum vector
t = Time
For motion of a point particle,
$ {L = I}\omega $
Where, I = moment of inertia
$ \omega { =} $ Orbital angular velocity pseudo vector.
Note
The student should know how to calculate cross product.
Torque is the measure of the force that can cause an object to rotate about an axis.
Torques cause an object to acquire angular acceleration.
It is a vector quantity.
Torque=force applied $ \times $ perpendicular distance from outermost layer to the canter.
$ {\vec{ \tau}}={\vec{r}}\times {\vec{F}} $
$ {a}\times {b=}\left| \begin{align}
& {i j k} \\
& {{{a}}_{1}}{ }{{{a}}_{2}}{ }{{{a}}_{3}} \\
& {{{b}}_{1}}{ }{{{b}}_{2}}{ }{{{b}}_{3}} \\
\end{align} \right| $
This determinant is computed using cofactor expansion. It expands to
${a}\times {b} =\left( {{{a}}_{2}}{{{b}}_{3}}-{{{a}}_{3}}{{{b}}_{2}} \right){i}-\left( {{{a}}_{1}}{{{b}}_{3}}-{{{a}}_{3}}{{{b}}_{1}} \right){j}+\left( {{{a}}_{1}}{{{b}}_{2}}-{{{a}}_{2}}{{{b}}_{1}} \right){k} $
Formula used: $ \vec{\tau }=\vec{r}\times \vec{F} $ Torque is given by cross product of perpendicular distance and force.
Complete Step by step solution
Given:
$ F=7\vec{i}+3\vec{j}-5\vec{k} $
$ \vec{r}=\vec{i}+\vec{j}+\vec{k} $ $ $
We know that torque $ \vec{\tau } $ is given by:
$ \vec{\tau }=\vec{r}\times \vec{F} $
$ =\left( \begin{matrix}
{\vec{i}} & {\vec{j}} & {\vec{k}} \\
1 & 1 & 1 \\
7 & 3 & -5 \\
\end{matrix} \right) $
$ \begin{align}
& =\vec{i}\left[ -5-3 \right]-\vec{j}\left[ -5-7 \right]+\vec{k}\left[ 3-7 \right] \\
& =-8\vec{i}+12\vec{j}-4\vec{k} \\
\end{align} $
Additional Information
Torque is the rotational equivalent of linear force. It's S.I. unit is $ {N m} $ (Newton meter). In S.I. base unit, its unit is $ {kg }{{{m}}^{2}}{{{s}}^{-2}} $ . $ $
Its dimension is given by $ {M}{{{L}}^{2}}{{{T}}^{-2}} $ .
The magnitude of the torque of a rigid body depends up on three factors:
Force applied
Lever arm vector connecting the point about which the torque is being measured to the point of force application.
Angle between force and lever arm vectors.
The net torque on a body determines the rate of change of the body's angular momentum.
$ \overrightarrow{{ }\!\!\tau\!\!{ }}=\overrightarrow{\frac{\alpha L}{\alpha t}} $
Where,
$ \alpha = $ angular momentum vector
t = Time
For motion of a point particle,
$ {L = I}\omega $
Where, I = moment of inertia
$ \omega { =} $ Orbital angular velocity pseudo vector.
Note
The student should know how to calculate cross product.
Torque is the measure of the force that can cause an object to rotate about an axis.
Torques cause an object to acquire angular acceleration.
It is a vector quantity.
Torque=force applied $ \times $ perpendicular distance from outermost layer to the canter.
$ {\vec{ \tau}}={\vec{r}}\times {\vec{F}} $
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

