
Find the torque of a force $ 7\vec{i}+3\vec{j}-5\vec{k} $ about the origin. The force acts on the particle whose position vector is $ \vec{i}+\vec{j}+\vec{k} $
Answer
537.9k+ views
Hint: Torque can be calculated by cross product of position vector and force. In terms of determinant, we can find the cross product using formula
$ {a}\times {b=}\left| \begin{align}
& {i j k} \\
& {{{a}}_{1}}{ }{{{a}}_{2}}{ }{{{a}}_{3}} \\
& {{{b}}_{1}}{ }{{{b}}_{2}}{ }{{{b}}_{3}} \\
\end{align} \right| $
This determinant is computed using cofactor expansion. It expands to
${a}\times {b} =\left( {{{a}}_{2}}{{{b}}_{3}}-{{{a}}_{3}}{{{b}}_{2}} \right){i}-\left( {{{a}}_{1}}{{{b}}_{3}}-{{{a}}_{3}}{{{b}}_{1}} \right){j}+\left( {{{a}}_{1}}{{{b}}_{2}}-{{{a}}_{2}}{{{b}}_{1}} \right){k} $
Formula used: $ \vec{\tau }=\vec{r}\times \vec{F} $ Torque is given by cross product of perpendicular distance and force.
Complete Step by step solution
Given:
$ F=7\vec{i}+3\vec{j}-5\vec{k} $
$ \vec{r}=\vec{i}+\vec{j}+\vec{k} $ $ $
We know that torque $ \vec{\tau } $ is given by:
$ \vec{\tau }=\vec{r}\times \vec{F} $
$ =\left( \begin{matrix}
{\vec{i}} & {\vec{j}} & {\vec{k}} \\
1 & 1 & 1 \\
7 & 3 & -5 \\
\end{matrix} \right) $
$ \begin{align}
& =\vec{i}\left[ -5-3 \right]-\vec{j}\left[ -5-7 \right]+\vec{k}\left[ 3-7 \right] \\
& =-8\vec{i}+12\vec{j}-4\vec{k} \\
\end{align} $
Additional Information
Torque is the rotational equivalent of linear force. It's S.I. unit is $ {N m} $ (Newton meter). In S.I. base unit, its unit is $ {kg }{{{m}}^{2}}{{{s}}^{-2}} $ . $ $
Its dimension is given by $ {M}{{{L}}^{2}}{{{T}}^{-2}} $ .
The magnitude of the torque of a rigid body depends up on three factors:
Force applied
Lever arm vector connecting the point about which the torque is being measured to the point of force application.
Angle between force and lever arm vectors.
The net torque on a body determines the rate of change of the body's angular momentum.
$ \overrightarrow{{ }\!\!\tau\!\!{ }}=\overrightarrow{\frac{\alpha L}{\alpha t}} $
Where,
$ \alpha = $ angular momentum vector
t = Time
For motion of a point particle,
$ {L = I}\omega $
Where, I = moment of inertia
$ \omega { =} $ Orbital angular velocity pseudo vector.
Note
The student should know how to calculate cross product.
Torque is the measure of the force that can cause an object to rotate about an axis.
Torques cause an object to acquire angular acceleration.
It is a vector quantity.
Torque=force applied $ \times $ perpendicular distance from outermost layer to the canter.
$ {\vec{ \tau}}={\vec{r}}\times {\vec{F}} $
$ {a}\times {b=}\left| \begin{align}
& {i j k} \\
& {{{a}}_{1}}{ }{{{a}}_{2}}{ }{{{a}}_{3}} \\
& {{{b}}_{1}}{ }{{{b}}_{2}}{ }{{{b}}_{3}} \\
\end{align} \right| $
This determinant is computed using cofactor expansion. It expands to
${a}\times {b} =\left( {{{a}}_{2}}{{{b}}_{3}}-{{{a}}_{3}}{{{b}}_{2}} \right){i}-\left( {{{a}}_{1}}{{{b}}_{3}}-{{{a}}_{3}}{{{b}}_{1}} \right){j}+\left( {{{a}}_{1}}{{{b}}_{2}}-{{{a}}_{2}}{{{b}}_{1}} \right){k} $
Formula used: $ \vec{\tau }=\vec{r}\times \vec{F} $ Torque is given by cross product of perpendicular distance and force.
Complete Step by step solution
Given:
$ F=7\vec{i}+3\vec{j}-5\vec{k} $
$ \vec{r}=\vec{i}+\vec{j}+\vec{k} $ $ $
We know that torque $ \vec{\tau } $ is given by:
$ \vec{\tau }=\vec{r}\times \vec{F} $
$ =\left( \begin{matrix}
{\vec{i}} & {\vec{j}} & {\vec{k}} \\
1 & 1 & 1 \\
7 & 3 & -5 \\
\end{matrix} \right) $
$ \begin{align}
& =\vec{i}\left[ -5-3 \right]-\vec{j}\left[ -5-7 \right]+\vec{k}\left[ 3-7 \right] \\
& =-8\vec{i}+12\vec{j}-4\vec{k} \\
\end{align} $
Additional Information
Torque is the rotational equivalent of linear force. It's S.I. unit is $ {N m} $ (Newton meter). In S.I. base unit, its unit is $ {kg }{{{m}}^{2}}{{{s}}^{-2}} $ . $ $
Its dimension is given by $ {M}{{{L}}^{2}}{{{T}}^{-2}} $ .
The magnitude of the torque of a rigid body depends up on three factors:
Force applied
Lever arm vector connecting the point about which the torque is being measured to the point of force application.
Angle between force and lever arm vectors.
The net torque on a body determines the rate of change of the body's angular momentum.
$ \overrightarrow{{ }\!\!\tau\!\!{ }}=\overrightarrow{\frac{\alpha L}{\alpha t}} $
Where,
$ \alpha = $ angular momentum vector
t = Time
For motion of a point particle,
$ {L = I}\omega $
Where, I = moment of inertia
$ \omega { =} $ Orbital angular velocity pseudo vector.
Note
The student should know how to calculate cross product.
Torque is the measure of the force that can cause an object to rotate about an axis.
Torques cause an object to acquire angular acceleration.
It is a vector quantity.
Torque=force applied $ \times $ perpendicular distance from outermost layer to the canter.
$ {\vec{ \tau}}={\vec{r}}\times {\vec{F}} $
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

