
Find the square root of $ - 16 + 30i $ .
Answer
573k+ views
Hint: A complex number is a combination of real part and imaginary part. As per the complex coordinate system, $ x $ denotes the real axis and $ y $ represents the imaginary axis. The imaginary part consists of $ i $ called as imaginary unit number denotes square root of $ - 1 $ , i.e. $ i = \sqrt { - 1} $ . In the complex number of the form $ a + ib $ , $ a $ denotes the real part of the complex number and $ b $ denotes the imaginary part of the complex number. The magnitude of a complex number of the form $ a + ib $ is given as $ \sqrt {{a^2} + {b^2}} $ . Understanding of complex numbers is necessary in order to solve this type of question.
Complete step-by-step answer:
Let us assume that the square root of the given complex number is $ a + ib $ .
So, this means $ a + ib = \sqrt { - 16 + 30i} $
Now, we should square the equation on both sides.
$\Rightarrow {\left( {a + ib} \right)^2} = {\left( {\sqrt { - 16 + 30i} } \right)^2} $
We know that $ {i^2} = - 1 $ .
On simplifying the equation using the formula $ {\left( {x + y} \right)^2} = {x^2} + 2xy + {y^2} $ , we get,
$\Rightarrow {a^2} - {b^2} + i2ab = - 16 + 30i $
Let us compare both sides of the equation and equate the imaginary parts of both sides as well as the real parts present on both sides of the equation.
$ {a^2} - {b^2} = - 16 $ and $ i2ab = 30 $
$ 2ab = 30 $ implies that $ ab = 15 $
It is known that $ {\left| z \right|^2} = \left| {{z^2}} \right| $ .
Let us assume that $ - 16 + 30i = {z^2} $ , this implies that $ a + ib = z $ .
But we already know that $ {\left| z \right|^2} = \left| {{z^2}} \right| $
Let us substitute $ {z^2} = - 16 + 30i $ and $ z = a + ib $ in the equation $ {\left| z \right|^2} = \left| {{z^2}} \right| $ .
After substitution, we get, $ {\left| {a + ib} \right|^2} = \left| { - 16 + 30i} \right| $ .
The magnitude of $ a + ib $ is $ \left| {a + ib} \right| = \sqrt {{a^2} + {b^2}} $ .
So,
$ \Rightarrow {\left( {\sqrt {{a^2} + {b^2}} } \right)^2} = \left| { - 16 + 30i} \right| $ . Also $ \left| { - 16 + 30i} \right| = \sqrt {{{\left( { - 16} \right)}^2} + {{\left( {30} \right)}^2}} $
Now, $ {\left( {\sqrt {{a^2} + {b^2}} } \right)^2} = \sqrt {{{\left( { - 16} \right)}^2} + {{\left( {30} \right)}^2}} $
$
\Rightarrow {a^2} + {b^2} = \sqrt {256 + 900} \\
\Rightarrow {a^2} + {b^2} = \sqrt {1156} \\
\Rightarrow {a^2} + {b^2} = 34
$
$
ab = 15\\
a = \dfrac{{15}}{b}
$
Now, we can substitute in the equation $ {a^2} + {b^2} = 34 $ .
After substituting, we get, $ {\left( {\dfrac{{15}}{b}} \right)^2} + {b^2} = 34 $
$
\Rightarrow \dfrac{{225}}{{{b^2}}} + {b^2} = 34\\
\dfrac{{225 + {b^2} \cdot {b^2}}}{{{b^2}}} = 34\\
\dfrac{{225 + {b^4}}}{{{b^2}}} = 34
$
After multiplying $ {b^2} $ on both sides of the equation, we get $ 225 + {b^4} = 34{b^2} $
On rearranging the terms, we get, $ {b^4} - 34{b^2} + 225 = 0 $
It is known that $ 25 + 9 = 34 $ and $ 25 \times 9 = 225 $ .
So, $ {b^4} - 34{b^2} + 225 = 0 $ can be written as $ {b^4} - 25{b^2} - 9{b^2} + 225 = 0 $ .
Now, let us take $ {b^2} $ and 9 common from the equation $ {b^4} - 25{b^2} - 9{b^2} + 225 = 0 $
$ {b^2}\left( {{b^2} - 25} \right) - 9\left( {{b^2} - 25} \right) = 0\\
\left( {{b^2} - 25} \right)\left( {{b^2} - 9} \right) = 0 $
This implies, $ {b^2} - 9 = 0 $ and $ {b^2} - 25 = 0 $
So, $ b = \pm 3 $ and $ b = \pm 5 $
If b = 3, then $ a = 5 $ as $ a \cdot b = 15 $
If $ b = - 3 $ , then $ a = - 5 $ as $ a \cdot b = 15 $
If $ b = 5 $ , then $ a = 3 $ as $ a \cdot b = 15 $
If $ b = - 5 $ , then $ a = - 3 $ as $ a \cdot b = 15 $
But $ {a^2} - {b^2} = - 16 $ . So, the values of $ a $ and $ b $ should also satisfy the equation $ {a^2} - {b^2} = - 16 $ .
Now, let us substitute a = 3 and $ b = 5 $ to check whether $ {a^2} - {b^2} $ is $ - 16 $ .
$
\Rightarrow {a^2} - {b^2} = {3^2} - {5^2}\\
= 9 - 25\\
= - 16
$
So, a = 3 and $ b = 5 $ satisfies the equation $ {a^2} - {b^2} = - 16 $ .
Now, let us substitute a = - 3 and $ b = - 5 $ to check whether $ {a^2} - {b^2} $ is $ - 16 $
$
\Rightarrow {a^2} - {b^2} = {\left( { - 3} \right)^2} - {\left( { - 5} \right)^2}\\
= 9 - 25\\
= - 16
$
So, a = - 3 and $ b = - 5 $ satisfies the equation $ {a^2} - {b^2} = - 16 $ .
Now, let us substitute a = - 5 and $ b = - 3 $ to check whether $ {a^2} - {b^2} $ is $ - 16 $ .
$
\Rightarrow {a^2} - {b^2} = {\left( { - 5} \right)^2} - {\left( { - 3} \right)^2}\\
= 25 - 9\\
= 16
$
So, a = - 5 and $ b = - 3 $ doesn’t satisfy the equation $ {a^2} - {b^2} = - 16 $ .
Now, let us substitute $ a = 5 $ and $ b = 3 $ to check whether $ {a^2} - {b^2} $ is $ - 16 $
$
\Rightarrow {a^2} - {b^2} = {5^2} - {3^2}\\
= 25 - 9\\
= 16
$
So, $ a = 5 $ and $ b = 3 $ doesn’t satisfy the equation $ {a^2} - {b^2} = - 16 $ .
$ a = 3 $ , $ b = 5 $ and $ a = - 3 $ , $ b = - 5 $ .
The required complex numbers $ a + ib $ are $ - 3 - 5i $ and $ 3 + 5i $ .
Therefore, the square root of the complex number $ - 16 + 30i $ are $ - 3 - 5i $ and $ 3 + 5i $ .
So, the correct answer is “ $ - 3 - 5i $ and $ 3 + 5i $ ”.
Note: In this type of question, students use the formula for finding the magnitude of complex numbers properly without making any mistakes. Also, note that when the square of a variable is given as a constant, then the values of the variable are positive and negative of the square root of the constant. This can be represented mathematically as, if $ {x^2} = a $ then $ x = \pm a $ .
Complete step-by-step answer:
Let us assume that the square root of the given complex number is $ a + ib $ .
So, this means $ a + ib = \sqrt { - 16 + 30i} $
Now, we should square the equation on both sides.
$\Rightarrow {\left( {a + ib} \right)^2} = {\left( {\sqrt { - 16 + 30i} } \right)^2} $
We know that $ {i^2} = - 1 $ .
On simplifying the equation using the formula $ {\left( {x + y} \right)^2} = {x^2} + 2xy + {y^2} $ , we get,
$\Rightarrow {a^2} - {b^2} + i2ab = - 16 + 30i $
Let us compare both sides of the equation and equate the imaginary parts of both sides as well as the real parts present on both sides of the equation.
$ {a^2} - {b^2} = - 16 $ and $ i2ab = 30 $
$ 2ab = 30 $ implies that $ ab = 15 $
It is known that $ {\left| z \right|^2} = \left| {{z^2}} \right| $ .
Let us assume that $ - 16 + 30i = {z^2} $ , this implies that $ a + ib = z $ .
But we already know that $ {\left| z \right|^2} = \left| {{z^2}} \right| $
Let us substitute $ {z^2} = - 16 + 30i $ and $ z = a + ib $ in the equation $ {\left| z \right|^2} = \left| {{z^2}} \right| $ .
After substitution, we get, $ {\left| {a + ib} \right|^2} = \left| { - 16 + 30i} \right| $ .
The magnitude of $ a + ib $ is $ \left| {a + ib} \right| = \sqrt {{a^2} + {b^2}} $ .
So,
$ \Rightarrow {\left( {\sqrt {{a^2} + {b^2}} } \right)^2} = \left| { - 16 + 30i} \right| $ . Also $ \left| { - 16 + 30i} \right| = \sqrt {{{\left( { - 16} \right)}^2} + {{\left( {30} \right)}^2}} $
Now, $ {\left( {\sqrt {{a^2} + {b^2}} } \right)^2} = \sqrt {{{\left( { - 16} \right)}^2} + {{\left( {30} \right)}^2}} $
$
\Rightarrow {a^2} + {b^2} = \sqrt {256 + 900} \\
\Rightarrow {a^2} + {b^2} = \sqrt {1156} \\
\Rightarrow {a^2} + {b^2} = 34
$
$
ab = 15\\
a = \dfrac{{15}}{b}
$
Now, we can substitute in the equation $ {a^2} + {b^2} = 34 $ .
After substituting, we get, $ {\left( {\dfrac{{15}}{b}} \right)^2} + {b^2} = 34 $
$
\Rightarrow \dfrac{{225}}{{{b^2}}} + {b^2} = 34\\
\dfrac{{225 + {b^2} \cdot {b^2}}}{{{b^2}}} = 34\\
\dfrac{{225 + {b^4}}}{{{b^2}}} = 34
$
After multiplying $ {b^2} $ on both sides of the equation, we get $ 225 + {b^4} = 34{b^2} $
On rearranging the terms, we get, $ {b^4} - 34{b^2} + 225 = 0 $
It is known that $ 25 + 9 = 34 $ and $ 25 \times 9 = 225 $ .
So, $ {b^4} - 34{b^2} + 225 = 0 $ can be written as $ {b^4} - 25{b^2} - 9{b^2} + 225 = 0 $ .
Now, let us take $ {b^2} $ and 9 common from the equation $ {b^4} - 25{b^2} - 9{b^2} + 225 = 0 $
$ {b^2}\left( {{b^2} - 25} \right) - 9\left( {{b^2} - 25} \right) = 0\\
\left( {{b^2} - 25} \right)\left( {{b^2} - 9} \right) = 0 $
This implies, $ {b^2} - 9 = 0 $ and $ {b^2} - 25 = 0 $
So, $ b = \pm 3 $ and $ b = \pm 5 $
If b = 3, then $ a = 5 $ as $ a \cdot b = 15 $
If $ b = - 3 $ , then $ a = - 5 $ as $ a \cdot b = 15 $
If $ b = 5 $ , then $ a = 3 $ as $ a \cdot b = 15 $
If $ b = - 5 $ , then $ a = - 3 $ as $ a \cdot b = 15 $
But $ {a^2} - {b^2} = - 16 $ . So, the values of $ a $ and $ b $ should also satisfy the equation $ {a^2} - {b^2} = - 16 $ .
Now, let us substitute a = 3 and $ b = 5 $ to check whether $ {a^2} - {b^2} $ is $ - 16 $ .
$
\Rightarrow {a^2} - {b^2} = {3^2} - {5^2}\\
= 9 - 25\\
= - 16
$
So, a = 3 and $ b = 5 $ satisfies the equation $ {a^2} - {b^2} = - 16 $ .
Now, let us substitute a = - 3 and $ b = - 5 $ to check whether $ {a^2} - {b^2} $ is $ - 16 $
$
\Rightarrow {a^2} - {b^2} = {\left( { - 3} \right)^2} - {\left( { - 5} \right)^2}\\
= 9 - 25\\
= - 16
$
So, a = - 3 and $ b = - 5 $ satisfies the equation $ {a^2} - {b^2} = - 16 $ .
Now, let us substitute a = - 5 and $ b = - 3 $ to check whether $ {a^2} - {b^2} $ is $ - 16 $ .
$
\Rightarrow {a^2} - {b^2} = {\left( { - 5} \right)^2} - {\left( { - 3} \right)^2}\\
= 25 - 9\\
= 16
$
So, a = - 5 and $ b = - 3 $ doesn’t satisfy the equation $ {a^2} - {b^2} = - 16 $ .
Now, let us substitute $ a = 5 $ and $ b = 3 $ to check whether $ {a^2} - {b^2} $ is $ - 16 $
$
\Rightarrow {a^2} - {b^2} = {5^2} - {3^2}\\
= 25 - 9\\
= 16
$
So, $ a = 5 $ and $ b = 3 $ doesn’t satisfy the equation $ {a^2} - {b^2} = - 16 $ .
$ a = 3 $ , $ b = 5 $ and $ a = - 3 $ , $ b = - 5 $ .
The required complex numbers $ a + ib $ are $ - 3 - 5i $ and $ 3 + 5i $ .
Therefore, the square root of the complex number $ - 16 + 30i $ are $ - 3 - 5i $ and $ 3 + 5i $ .
So, the correct answer is “ $ - 3 - 5i $ and $ 3 + 5i $ ”.
Note: In this type of question, students use the formula for finding the magnitude of complex numbers properly without making any mistakes. Also, note that when the square of a variable is given as a constant, then the values of the variable are positive and negative of the square root of the constant. This can be represented mathematically as, if $ {x^2} = a $ then $ x = \pm a $ .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

