
Find the solution of the differential equation:
$xdx+ydy+\dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}}=0$ will be
${{x}^{2}}+{{y}^{2}}-2{{\tan }^{-1}}x=c$
${{x}^{2}}+{{y}^{2}}+2{{\tan }^{-1}}\left( \dfrac{y}{x} \right)=c$
${{x}^{2}}+{{y}^{2}}+{{\tan }^{-1}}\left( \dfrac{y}{x} \right)=c$
${{x}^{2}}+{{y}^{2}}+2{{\tan }^{-1}}\left( \dfrac{x}{y} \right)=c$
Answer
602.1k+ views
Hint: Observe the term $\left( \dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}} \right)$ which is written in form of differentiation of $\begin{align}
& {{\tan }^{-}}\left( \dfrac{y}{x} \right) \\
& \Rightarrow \dfrac{d}{dx}\left( {{\tan }^{-1}}\dfrac{y}{x} \right)=\dfrac{x\dfrac{dy}{dx}-y}{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
And use the formula of $f{{x}^{n}}dx=\dfrac{{{x}^{n}}+1}{n+1}$ to solve the given differential equation.
Complete step by step answer:
Given differential equation is
$xdx+ydy+\dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}}=0..............\left( i \right)$
Here, we need to observe the term $\dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}}$ and use the exact differentiable approach as $\dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}}$ is the direct derivative of some term and we have to observe that only. So, let us directly integrate the equation (i) with the help of the mentioned method (directly applying integration to the given differential equation). So, we get:
$\int{xdx+\int{ydy+\int{\dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}}=0}}}$
We know the integration of ${{x}^{n}}$ with respect ‘x’ is given as
$\dfrac{{{x}^{n}}+1}{n+1}\Rightarrow \int{{{x}^{n}}dx=\dfrac{{{x}^{n}}+1}{n+1}}$
So, we can replace the terms $\int{xdx,\int{ydx\Rightarrow \dfrac{{{x}^{2}}}{2},\dfrac{{{y}^{2}}}{2}}}$ respectively by using the identity $\int{{{x}^{n}}=\dfrac{{{x}^{n}}+1}{n+1}}$
So, we get
$\dfrac{{{x}^{2}}}{2}+\dfrac{{{y}^{2}}}{2}+\int{\dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}}+c=0.............\left( ii \right)}$
Now, let us differentiate the term ${{\tan }^{-1}}\left( \dfrac{y}{x} \right)$ with respect to ‘x’ so, we need to find
$\dfrac{d}{dx}\left( {{\tan }^{-1}}\left( \dfrac{y}{x} \right) \right)=?$
As, we know the derivative of ${{\tan }^{-1}}x$ w.r.t ‘x’ is
$\dfrac{1}{1+{{x}^{2}}}\Rightarrow \dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{n}^{2}}}$
And we need to use chain rule and division rule of derivative to differentiate the expression ${{\tan }^{-1}}\left( \dfrac{y}{x} \right)$ chain rule will be used because ${{\tan }^{-1}}\left( \dfrac{y}{x} \right)$ is a composite function i.e. algebraic function with inverse trigonometric function. Chain rule is given as
${{\left( fg\left( x \right) \right)}^{'}}={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right)...............\left( iii \right)$
Division rule of derivative is given as
$\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-\dfrac{du}{dx}}{{{v}^{2}}}................\left( iv \right)$
Where ‘u’ and ‘v’ are two functions in fraction. Now let us differentiate $\dfrac{d}{dx}\left( {{\tan }^{-1}}\left( \dfrac{y}{x} \right) \right)$
So, we get
$\dfrac{d}{dx}\left( {{\tan }^{-1}}\left( \dfrac{y}{x} \right) \right)=\dfrac{1}{1+{{\left( \dfrac{y}{x} \right)}^{2}}}\dfrac{d}{dx}\left( \dfrac{y}{x} \right)$
Where, we know
$\dfrac{d}{dx}{{\tan }^{-1}}x=\dfrac{1}{1+{{x}^{2}}}$
So, we get
$\dfrac{d}{dx}\left( {{\tan }^{-1}}\dfrac{y}{x} \right)=\dfrac{{{x}^{2}}}{{{x}^{2}}+{{y}^{2}}}\dfrac{d}{dx}\left( \dfrac{y}{x} \right)$
Now, use the division rule of derivative given in equation (iv) by putting u = y and v = x. So, we get
$\begin{align}
& \dfrac{d}{dx}{{\tan }^{-1}}\left( \dfrac{y}{x} \right)=\dfrac{{{x}^{2}}}{{{x}^{2}}+{{y}^{2}}}\dfrac{x\dfrac{dy}{dx}-y\dfrac{dx}{dx}}{{{x}^{2}}} \\
& \dfrac{d}{dx}\left( {{\tan }^{-1}}\dfrac{y}{x} \right)=\dfrac{x\dfrac{dy}{dx}-y}{{{x}^{2}}+{{y}^{2}}} \\
& \Rightarrow \dfrac{d}{dx}\left( {{\tan }^{-1}}\dfrac{y}{x} \right)=\dfrac{1}{dx}\left( \dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}} \right) \\
\end{align}$
Cancel out ‘dx’ from both sides, we get
$d\left( {{\tan }^{-1}}\dfrac{y}{x} \right)=\left( \dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}} \right)...............\left( v \right)$
Now, we can replace $\left( \dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}} \right)$ in the equation (ii) by using the equation (v). So, we get equation (ii) as
$\dfrac{{{x}^{2}}}{2}+\dfrac{{{y}^{2}}}{2}+\int{d\left( {{\tan }^{-1}}\dfrac{y}{x} \right)+{{c}_{1}}=0}$
Now, as we know integration of dx is x, similarly integration of
$d\left( {{\tan }^{-1}}\dfrac{y}{x} \right)\Rightarrow {{\tan }^{-1}}\left( \dfrac{y}{x} \right)$
So, we get
$\begin{align}
& \dfrac{{{x}^{2}}}{2}+\dfrac{{{y}^{2}}}{2}+{{\tan }^{-1}}\left( \dfrac{y}{x} \right)+{{c}_{1}}=0 \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}+2{{\tan }^{-1}}\left( \dfrac{y}{x} \right)+2{{c}_{1}}=0 \\
\end{align}$
Hence, solution of the given differential equation will be
${{x}^{2}}+{{y}^{2}}+2{{\tan }^{-1}}\left( \dfrac{y}{x} \right)+2{{c}_{1}}=0$
${{x}^{2}}+{{y}^{2}}+2{{\tan }^{-1}}\left( \dfrac{y}{x} \right)=-2{{c}_{1}}$
Replace $-2{{c}_{1}}$ by c, hence we get
${{x}^{2}}+{{y}^{2}}+2{{\tan }^{-1}}\left( \dfrac{y}{x} \right)=c$
So, option (c) is correct.
Note: One may try to use linear, homogenous or variable separable methods to solve the given differential equation, which will be very complex approaches for these kinds of questions. So, try to observe the pattern and apply the required method observing,
$\int{\dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}}=\int{d\left( {{\tan }^{-1}}\left( \dfrac{y}{d} \right) \right)}}$
Is the key point of the question. Another approach for this question would be that we can put $x=r\sin \theta ,y=r\cos \theta $ to the given expression.
& {{\tan }^{-}}\left( \dfrac{y}{x} \right) \\
& \Rightarrow \dfrac{d}{dx}\left( {{\tan }^{-1}}\dfrac{y}{x} \right)=\dfrac{x\dfrac{dy}{dx}-y}{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
And use the formula of $f{{x}^{n}}dx=\dfrac{{{x}^{n}}+1}{n+1}$ to solve the given differential equation.
Complete step by step answer:
Given differential equation is
$xdx+ydy+\dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}}=0..............\left( i \right)$
Here, we need to observe the term $\dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}}$ and use the exact differentiable approach as $\dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}}$ is the direct derivative of some term and we have to observe that only. So, let us directly integrate the equation (i) with the help of the mentioned method (directly applying integration to the given differential equation). So, we get:
$\int{xdx+\int{ydy+\int{\dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}}=0}}}$
We know the integration of ${{x}^{n}}$ with respect ‘x’ is given as
$\dfrac{{{x}^{n}}+1}{n+1}\Rightarrow \int{{{x}^{n}}dx=\dfrac{{{x}^{n}}+1}{n+1}}$
So, we can replace the terms $\int{xdx,\int{ydx\Rightarrow \dfrac{{{x}^{2}}}{2},\dfrac{{{y}^{2}}}{2}}}$ respectively by using the identity $\int{{{x}^{n}}=\dfrac{{{x}^{n}}+1}{n+1}}$
So, we get
$\dfrac{{{x}^{2}}}{2}+\dfrac{{{y}^{2}}}{2}+\int{\dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}}+c=0.............\left( ii \right)}$
Now, let us differentiate the term ${{\tan }^{-1}}\left( \dfrac{y}{x} \right)$ with respect to ‘x’ so, we need to find
$\dfrac{d}{dx}\left( {{\tan }^{-1}}\left( \dfrac{y}{x} \right) \right)=?$
As, we know the derivative of ${{\tan }^{-1}}x$ w.r.t ‘x’ is
$\dfrac{1}{1+{{x}^{2}}}\Rightarrow \dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{n}^{2}}}$
And we need to use chain rule and division rule of derivative to differentiate the expression ${{\tan }^{-1}}\left( \dfrac{y}{x} \right)$ chain rule will be used because ${{\tan }^{-1}}\left( \dfrac{y}{x} \right)$ is a composite function i.e. algebraic function with inverse trigonometric function. Chain rule is given as
${{\left( fg\left( x \right) \right)}^{'}}={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right)...............\left( iii \right)$
Division rule of derivative is given as
$\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-\dfrac{du}{dx}}{{{v}^{2}}}................\left( iv \right)$
Where ‘u’ and ‘v’ are two functions in fraction. Now let us differentiate $\dfrac{d}{dx}\left( {{\tan }^{-1}}\left( \dfrac{y}{x} \right) \right)$
So, we get
$\dfrac{d}{dx}\left( {{\tan }^{-1}}\left( \dfrac{y}{x} \right) \right)=\dfrac{1}{1+{{\left( \dfrac{y}{x} \right)}^{2}}}\dfrac{d}{dx}\left( \dfrac{y}{x} \right)$
Where, we know
$\dfrac{d}{dx}{{\tan }^{-1}}x=\dfrac{1}{1+{{x}^{2}}}$
So, we get
$\dfrac{d}{dx}\left( {{\tan }^{-1}}\dfrac{y}{x} \right)=\dfrac{{{x}^{2}}}{{{x}^{2}}+{{y}^{2}}}\dfrac{d}{dx}\left( \dfrac{y}{x} \right)$
Now, use the division rule of derivative given in equation (iv) by putting u = y and v = x. So, we get
$\begin{align}
& \dfrac{d}{dx}{{\tan }^{-1}}\left( \dfrac{y}{x} \right)=\dfrac{{{x}^{2}}}{{{x}^{2}}+{{y}^{2}}}\dfrac{x\dfrac{dy}{dx}-y\dfrac{dx}{dx}}{{{x}^{2}}} \\
& \dfrac{d}{dx}\left( {{\tan }^{-1}}\dfrac{y}{x} \right)=\dfrac{x\dfrac{dy}{dx}-y}{{{x}^{2}}+{{y}^{2}}} \\
& \Rightarrow \dfrac{d}{dx}\left( {{\tan }^{-1}}\dfrac{y}{x} \right)=\dfrac{1}{dx}\left( \dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}} \right) \\
\end{align}$
Cancel out ‘dx’ from both sides, we get
$d\left( {{\tan }^{-1}}\dfrac{y}{x} \right)=\left( \dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}} \right)...............\left( v \right)$
Now, we can replace $\left( \dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}} \right)$ in the equation (ii) by using the equation (v). So, we get equation (ii) as
$\dfrac{{{x}^{2}}}{2}+\dfrac{{{y}^{2}}}{2}+\int{d\left( {{\tan }^{-1}}\dfrac{y}{x} \right)+{{c}_{1}}=0}$
Now, as we know integration of dx is x, similarly integration of
$d\left( {{\tan }^{-1}}\dfrac{y}{x} \right)\Rightarrow {{\tan }^{-1}}\left( \dfrac{y}{x} \right)$
So, we get
$\begin{align}
& \dfrac{{{x}^{2}}}{2}+\dfrac{{{y}^{2}}}{2}+{{\tan }^{-1}}\left( \dfrac{y}{x} \right)+{{c}_{1}}=0 \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}+2{{\tan }^{-1}}\left( \dfrac{y}{x} \right)+2{{c}_{1}}=0 \\
\end{align}$
Hence, solution of the given differential equation will be
${{x}^{2}}+{{y}^{2}}+2{{\tan }^{-1}}\left( \dfrac{y}{x} \right)+2{{c}_{1}}=0$
${{x}^{2}}+{{y}^{2}}+2{{\tan }^{-1}}\left( \dfrac{y}{x} \right)=-2{{c}_{1}}$
Replace $-2{{c}_{1}}$ by c, hence we get
${{x}^{2}}+{{y}^{2}}+2{{\tan }^{-1}}\left( \dfrac{y}{x} \right)=c$
So, option (c) is correct.
Note: One may try to use linear, homogenous or variable separable methods to solve the given differential equation, which will be very complex approaches for these kinds of questions. So, try to observe the pattern and apply the required method observing,
$\int{\dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}}=\int{d\left( {{\tan }^{-1}}\left( \dfrac{y}{d} \right) \right)}}$
Is the key point of the question. Another approach for this question would be that we can put $x=r\sin \theta ,y=r\cos \theta $ to the given expression.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

