
Find the simplest form of \[{\tan ^{ - 1}}\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right|\], if it is given that \[\dfrac{3}{4}\tan x > - 1\].
Answer
573.6k+ views
Hint: We need to convert the expression given inside \[{\tan ^{ - 1}}\left| {} \right|\] in the form of tangents of an angle (say \[\theta \]). Such a conversion leads to the form of \[{\tan ^{ - 1}}\left( {\tan \left( \theta \right)} \right)\]. Simplify further to get the required result.
Complete step-by-step answer:
We can convert the expression in \[{\tan ^{ - 1}}\left( {\tan \left( \theta \right)} \right)\] form if we can express \[\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right|\] in the form of \[\tan \left( {a + b} \right)\] or \[\tan \left( {a - b} \right)\].
We know that \[\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}\].
Also, we know that \[\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\] .
There is difference of two terms in the numerator and sum of two terms in the denominator of \[\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right|\].
It is similar to \[\dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\].
Hence, let us try to express \[\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right|\] as \[\tan \left( {a - b} \right)\] where, \[a - b = \theta \].
We need to express the denominator in the form of \[1 + \tan a\tan b\].
First, let us divide both the numerator and the denominator by \[4\cos x\].
Also, we know that \[\tan x = \dfrac{{\sin x}}{{\cos x}}\].
Hence, substitute \[\tan x\] for \[\dfrac{{\sin x}}{{\cos x}}\] in the calculation.
\[\begin{array}{c}{\tan ^{ - 1}}\left| {\dfrac{{\dfrac{{3\cos x - 4\sin x}}{{4\cos x}}}}{{\dfrac{{4\cos x + 3\sin x}}{{4\cos x}}}}} \right| = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{{3\cos x}}{{4\cos x}} - \dfrac{{4\sin x}}{{4\cos x}}}}{{\dfrac{{4\cos x}}{{4\cos x}} + \dfrac{{3\sin x}}{{4\cos x}}}}} \right|\\ = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - \tan x}}{{1 + \dfrac{3}{4}\tan x}}} \right|\end{array}\]
Let us assume that \[\tan \phi = \dfrac{3}{4}\].
We also know that \[{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta \].
As we have to express the dfraction in the form \[\dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\], let us substitute \[\tan \phi \] for \[\dfrac{3}{4}\] and use the property \[{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta \] to simplify the expression.
\[\begin{array}{c}\tan \phi = \dfrac{3}{4}\\{\tan ^{ - 1}}\left( {\tan \phi } \right) = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right)\\\phi = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right)\end{array}\]
From the above simplification, we get \[\phi = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right)\].
After substitution, we get the following expression.
\[\begin{array}{c}{\tan ^{ - 1}}\left| {\dfrac{{\tan \phi - \tan x}}{{1 + \tan \phi \tan x}}} \right| = {\tan ^{ - 1}}\left( {\tan \left( {\phi - x} \right)} \right)\\ = \phi - x\end{array}\]
Hence, we get \[\theta = \phi - x\].
Now, we will back substitute \[{\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right)\] for \[\phi \] and we will get the simplified form of the given expression.
\[{\tan ^{ - 1}}\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right| = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) - x\]
Hence, the simplest form of \[{\tan ^{ - 1}}\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right|\] is \[{\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) - x\].
Note: We can also solve the question in a different way. We will repeat the first step.
Let us divide both the numerator and the denominator by \[4\cos x\].
Also, we know that \[\tan x = \dfrac{{\sin x}}{{\cos x}}\].
Hence, substitute \[\tan x\] for \[\dfrac{{\sin x}}{{\cos x}}\] in the calculation.
\[\begin{array}{c}{\tan ^{ - 1}}\left| {\dfrac{{\dfrac{{3\cos x - 4\sin x}}{{4\cos x}}}}{{\dfrac{{4\cos x + 3\sin x}}{{4\cos x}}}}} \right| = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{{3\cos x}}{{4\cos x}} - \dfrac{{4\sin x}}{{4\cos x}}}}{{\dfrac{{4\cos x}}{{4\cos x}} + \dfrac{{3\sin x}}{{4\cos x}}}}} \right|\\ = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - \tan x}}{{1 + \dfrac{3}{4}\tan x}}} \right|\end{array}\]
After that we get, \[{\tan ^{ - 1}}\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right| = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - \tan x}}{{1 + \dfrac{3}{4}\tan x}}} \right|\].
We will use the formula \[{\tan ^{ - 1}}\left( {\dfrac{{a - b}}{{1 + ab}}} \right) = {\tan ^{ - 1}}a - {\tan ^{ - 1}}b\] to further simplify the expression.
Let us assume that \[\dfrac{3}{4} = a\] and \[\tan x = b\].
Let us substitute \[\dfrac{3}{4}\] for \[a\] and \[\tan x\] for \[b\] in the formula.
We will get, \[{\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - \tan x}}{{1 + \dfrac{3}{4}\tan x}}} \right| = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) - {\tan ^{ - 1}}\left( {\tan x} \right)\].
As we know that \[{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta \], let us substitute \[x\] for \[{\tan ^{ - 1}}\left( {\tan x} \right)\].
Hence, we get \[{\tan ^{ - 1}}\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right| = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) - x\].
Complete step-by-step answer:
We can convert the expression in \[{\tan ^{ - 1}}\left( {\tan \left( \theta \right)} \right)\] form if we can express \[\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right|\] in the form of \[\tan \left( {a + b} \right)\] or \[\tan \left( {a - b} \right)\].
We know that \[\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}\].
Also, we know that \[\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\] .
There is difference of two terms in the numerator and sum of two terms in the denominator of \[\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right|\].
It is similar to \[\dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\].
Hence, let us try to express \[\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right|\] as \[\tan \left( {a - b} \right)\] where, \[a - b = \theta \].
We need to express the denominator in the form of \[1 + \tan a\tan b\].
First, let us divide both the numerator and the denominator by \[4\cos x\].
Also, we know that \[\tan x = \dfrac{{\sin x}}{{\cos x}}\].
Hence, substitute \[\tan x\] for \[\dfrac{{\sin x}}{{\cos x}}\] in the calculation.
\[\begin{array}{c}{\tan ^{ - 1}}\left| {\dfrac{{\dfrac{{3\cos x - 4\sin x}}{{4\cos x}}}}{{\dfrac{{4\cos x + 3\sin x}}{{4\cos x}}}}} \right| = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{{3\cos x}}{{4\cos x}} - \dfrac{{4\sin x}}{{4\cos x}}}}{{\dfrac{{4\cos x}}{{4\cos x}} + \dfrac{{3\sin x}}{{4\cos x}}}}} \right|\\ = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - \tan x}}{{1 + \dfrac{3}{4}\tan x}}} \right|\end{array}\]
Let us assume that \[\tan \phi = \dfrac{3}{4}\].
We also know that \[{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta \].
As we have to express the dfraction in the form \[\dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\], let us substitute \[\tan \phi \] for \[\dfrac{3}{4}\] and use the property \[{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta \] to simplify the expression.
\[\begin{array}{c}\tan \phi = \dfrac{3}{4}\\{\tan ^{ - 1}}\left( {\tan \phi } \right) = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right)\\\phi = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right)\end{array}\]
From the above simplification, we get \[\phi = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right)\].
After substitution, we get the following expression.
\[\begin{array}{c}{\tan ^{ - 1}}\left| {\dfrac{{\tan \phi - \tan x}}{{1 + \tan \phi \tan x}}} \right| = {\tan ^{ - 1}}\left( {\tan \left( {\phi - x} \right)} \right)\\ = \phi - x\end{array}\]
Hence, we get \[\theta = \phi - x\].
Now, we will back substitute \[{\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right)\] for \[\phi \] and we will get the simplified form of the given expression.
\[{\tan ^{ - 1}}\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right| = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) - x\]
Hence, the simplest form of \[{\tan ^{ - 1}}\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right|\] is \[{\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) - x\].
Note: We can also solve the question in a different way. We will repeat the first step.
Let us divide both the numerator and the denominator by \[4\cos x\].
Also, we know that \[\tan x = \dfrac{{\sin x}}{{\cos x}}\].
Hence, substitute \[\tan x\] for \[\dfrac{{\sin x}}{{\cos x}}\] in the calculation.
\[\begin{array}{c}{\tan ^{ - 1}}\left| {\dfrac{{\dfrac{{3\cos x - 4\sin x}}{{4\cos x}}}}{{\dfrac{{4\cos x + 3\sin x}}{{4\cos x}}}}} \right| = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{{3\cos x}}{{4\cos x}} - \dfrac{{4\sin x}}{{4\cos x}}}}{{\dfrac{{4\cos x}}{{4\cos x}} + \dfrac{{3\sin x}}{{4\cos x}}}}} \right|\\ = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - \tan x}}{{1 + \dfrac{3}{4}\tan x}}} \right|\end{array}\]
After that we get, \[{\tan ^{ - 1}}\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right| = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - \tan x}}{{1 + \dfrac{3}{4}\tan x}}} \right|\].
We will use the formula \[{\tan ^{ - 1}}\left( {\dfrac{{a - b}}{{1 + ab}}} \right) = {\tan ^{ - 1}}a - {\tan ^{ - 1}}b\] to further simplify the expression.
Let us assume that \[\dfrac{3}{4} = a\] and \[\tan x = b\].
Let us substitute \[\dfrac{3}{4}\] for \[a\] and \[\tan x\] for \[b\] in the formula.
We will get, \[{\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - \tan x}}{{1 + \dfrac{3}{4}\tan x}}} \right| = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) - {\tan ^{ - 1}}\left( {\tan x} \right)\].
As we know that \[{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta \], let us substitute \[x\] for \[{\tan ^{ - 1}}\left( {\tan x} \right)\].
Hence, we get \[{\tan ^{ - 1}}\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right| = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) - x\].
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

