
Find the roots of the equation: $x+\dfrac{1}{x}=3,x\ne 0$.
Answer
565.8k+ views
Hint: We first simplify the equation to get quadratic form. Then we equate the given polynomial with the general form of the quadratic equation. We try to find the points where the curve intersects the X-axis. We take the x coordinates of those points using the theorem $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
Complete step-by-step solution
We need to find the roots of the equation $x+\dfrac{1}{x}=3,x\ne 0$.
We first simplify the equation to make the quadratic equation.
$\begin{align}
& x+\dfrac{1}{x}=3 \\
& \Rightarrow {{x}^{2}}+1=3x \\
& \Rightarrow {{x}^{2}}-3x+1=0 \\
\end{align}$
We have a quadratic equation ${{x}^{2}}-3x+1=0$. Let $y\left( x \right)={{x}^{2}}-3x+1$.
We are finding the roots or zeros of the polynomial. The solutions are the points of x at which the polynomial value is 0. In the graphical form, we are finding the intersection points of the curve with the X-axis.
Now we verify it with the algebraic version of the solution.
We use the theorem $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ for the general equation of polynomial $a{{x}^{2}}+bx+c=0$.
So, at those root points the equational value is 0. So, we are solving the equation $y\left( x \right)={{x}^{2}}-3x+1$. Here $a=1,b=-3,c=1$.
Putting values of $a=1,b=-3,c=1$ in the equation $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
$x=\dfrac{-\left( -3 \right)\pm \sqrt{{{\left\{ -\left( -3 \right) \right\}}^{2}}-4\times 1\times 1}}{2\times 1}=\dfrac{3\pm \sqrt{{{3}^{2}}-4\times 1\times 1}}{2\times 1}=\dfrac{3\pm \sqrt{5}}{2}$.
So, the roots of the equation $x+\dfrac{1}{x}=3$ are $x=\dfrac{3\pm \sqrt{5}}{2}$.
Note: We need to understand that the polynomial value has to be 0. Zeroes of the polynomial are the roots of the polynomial. So, at those points, the functional value of the curve is 0. The slope of the curve at those points is similar value-wise. We can also verify this result by substituting the values of zeros in the given equation ${{x}^{2}}-3x+2$ and check if the results satisfy or not. The $\sqrt{{{b}^{2}}-4ac}$ part in the form of $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ is called the determinant.
Complete step-by-step solution
We need to find the roots of the equation $x+\dfrac{1}{x}=3,x\ne 0$.
We first simplify the equation to make the quadratic equation.
$\begin{align}
& x+\dfrac{1}{x}=3 \\
& \Rightarrow {{x}^{2}}+1=3x \\
& \Rightarrow {{x}^{2}}-3x+1=0 \\
\end{align}$
We have a quadratic equation ${{x}^{2}}-3x+1=0$. Let $y\left( x \right)={{x}^{2}}-3x+1$.
We are finding the roots or zeros of the polynomial. The solutions are the points of x at which the polynomial value is 0. In the graphical form, we are finding the intersection points of the curve with the X-axis.
Now we verify it with the algebraic version of the solution.
We use the theorem $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ for the general equation of polynomial $a{{x}^{2}}+bx+c=0$.
So, at those root points the equational value is 0. So, we are solving the equation $y\left( x \right)={{x}^{2}}-3x+1$. Here $a=1,b=-3,c=1$.
Putting values of $a=1,b=-3,c=1$ in the equation $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
$x=\dfrac{-\left( -3 \right)\pm \sqrt{{{\left\{ -\left( -3 \right) \right\}}^{2}}-4\times 1\times 1}}{2\times 1}=\dfrac{3\pm \sqrt{{{3}^{2}}-4\times 1\times 1}}{2\times 1}=\dfrac{3\pm \sqrt{5}}{2}$.
So, the roots of the equation $x+\dfrac{1}{x}=3$ are $x=\dfrac{3\pm \sqrt{5}}{2}$.
Note: We need to understand that the polynomial value has to be 0. Zeroes of the polynomial are the roots of the polynomial. So, at those points, the functional value of the curve is 0. The slope of the curve at those points is similar value-wise. We can also verify this result by substituting the values of zeros in the given equation ${{x}^{2}}-3x+2$ and check if the results satisfy or not. The $\sqrt{{{b}^{2}}-4ac}$ part in the form of $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ is called the determinant.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

