Answer

Verified

420.9k+ views

**Hint:**We first simplify the equation to get quadratic form. Then we equate the given polynomial with the general form of the quadratic equation. We try to find the points where the curve intersects the X-axis. We take the x coordinates of those points using the theorem $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.

**Complete step-by-step solution**

We need to find the roots of the equation $x+\dfrac{1}{x}=3,x\ne 0$.

We first simplify the equation to make the quadratic equation.

$\begin{align}

& x+\dfrac{1}{x}=3 \\

& \Rightarrow {{x}^{2}}+1=3x \\

& \Rightarrow {{x}^{2}}-3x+1=0 \\

\end{align}$

We have a quadratic equation ${{x}^{2}}-3x+1=0$. Let $y\left( x \right)={{x}^{2}}-3x+1$.

We are finding the roots or zeros of the polynomial. The solutions are the points of x at which the polynomial value is 0. In the graphical form, we are finding the intersection points of the curve with the X-axis.

Now we verify it with the algebraic version of the solution.

We use the theorem $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ for the general equation of polynomial $a{{x}^{2}}+bx+c=0$.

So, at those root points the equational value is 0. So, we are solving the equation $y\left( x \right)={{x}^{2}}-3x+1$. Here $a=1,b=-3,c=1$.

Putting values of $a=1,b=-3,c=1$ in the equation $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.

$x=\dfrac{-\left( -3 \right)\pm \sqrt{{{\left\{ -\left( -3 \right) \right\}}^{2}}-4\times 1\times 1}}{2\times 1}=\dfrac{3\pm \sqrt{{{3}^{2}}-4\times 1\times 1}}{2\times 1}=\dfrac{3\pm \sqrt{5}}{2}$.

So, the roots of the equation $x+\dfrac{1}{x}=3$ are $x=\dfrac{3\pm \sqrt{5}}{2}$.

**Note:**We need to understand that the polynomial value has to be 0. Zeroes of the polynomial are the roots of the polynomial. So, at those points, the functional value of the curve is 0. The slope of the curve at those points is similar value-wise. We can also verify this result by substituting the values of zeros in the given equation ${{x}^{2}}-3x+2$ and check if the results satisfy or not. The $\sqrt{{{b}^{2}}-4ac}$ part in the form of $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ is called the determinant.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Which are the Top 10 Largest Countries of the World?

Write a letter to the principal requesting him to grant class 10 english CBSE

10 examples of evaporation in daily life with explanations

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE