
Find the resultant of three vectors $\overrightarrow{OA}$, $\overrightarrow{OB}$ and $\overrightarrow{OC}$ shown in the figure given below. Radius of the circle is $R$.
Answer
491.7k+ views
Hint:Vectors cannot be added simply as scalars are added because they have magnitude as well as direction. All the three vectors are in different directions. We will find their components in $X$ direction and in $Y$ direction.
Complete step by step answer:
Vector is a quantity which has both magnitude and direction. It is represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity’s magnitude. A vector is not altered if it is displaced parallel to itself.
To add the given three vectors we will find their components in X direction and in Y direction.Let us take the direction of $\overrightarrow{OA}$ as X axis and perpendicular to this, which is the direction of $\overrightarrow{OC}$ as Y axis. Therefore, $\overrightarrow{OA}$ The vector is in X direction only and has no component in Y direction.$\overrightarrow{OC}$ has its component only in the Y direction.
Vector $\overrightarrow{OB}$ is making ${{45}^{\circ }}$angle with the X axis as well as with the Y axis.
$\left| \overrightarrow{OA} \right|=\left| \overrightarrow{OB} \right|=\left| \overrightarrow{OC} \right|=R$ (given)
$X$ components:-
Sum of vectors in $x$ direction=${{v}_{x}}$
${{v}_{x}}$= $R\cos 0+R\cos 45+R\cos 90$
$\Rightarrow {{v}_{x}}=R+\frac{R}{\sqrt{2}}+0$
$\Rightarrow {{v}_{x}}=R\left( 1+\frac{1}{\sqrt{2}} \right)$
Sum of $y$ Components=
${{v}_{x}}=R\sin 90+R\sin 45+R\sin 0 \\
\Rightarrow {{v}_{x}}=R+\frac{R}{\sqrt{2}}+0 \\
\Rightarrow {{v}_{x}}=R\left( 1+\frac{1}{\sqrt{2}} \right) \\ $
$\Rightarrow \text{Resultant vector} =\sqrt{v_{x}^{2}+v_{y}^{2}}$
$\Rightarrow \text{Resultant}= \sqrt{{{\left[ R\left( 1+\frac{1}{\sqrt{2}} \right) \right]}^{2}}+{{\left[ R\left( 1+\frac{1}{\sqrt{2}} \right) \right]}^{2}}}$
$\Rightarrow \text{Resultant} =R\sqrt{2{{\left( 1+\frac{1}{\sqrt{2}} \right)}^{2}}}$
$\therefore \text{Resultant}=R\left( \sqrt{2}+1 \right)$
Hence, the resultant of three vectors is $R\left( 1+\sqrt{2} \right)$.
Note:We can use the parallelogram law of vector addition first for two vectors and then using their resultant vector with the third vector to calculate the resultant of three vectors. Do not add the vectors simply and do not forget to find their components to get the resultant vector.
Complete step by step answer:
Vector is a quantity which has both magnitude and direction. It is represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity’s magnitude. A vector is not altered if it is displaced parallel to itself.
To add the given three vectors we will find their components in X direction and in Y direction.Let us take the direction of $\overrightarrow{OA}$ as X axis and perpendicular to this, which is the direction of $\overrightarrow{OC}$ as Y axis. Therefore, $\overrightarrow{OA}$ The vector is in X direction only and has no component in Y direction.$\overrightarrow{OC}$ has its component only in the Y direction.
Vector $\overrightarrow{OB}$ is making ${{45}^{\circ }}$angle with the X axis as well as with the Y axis.
$\left| \overrightarrow{OA} \right|=\left| \overrightarrow{OB} \right|=\left| \overrightarrow{OC} \right|=R$ (given)
$X$ components:-
Sum of vectors in $x$ direction=${{v}_{x}}$
${{v}_{x}}$= $R\cos 0+R\cos 45+R\cos 90$
$\Rightarrow {{v}_{x}}=R+\frac{R}{\sqrt{2}}+0$
$\Rightarrow {{v}_{x}}=R\left( 1+\frac{1}{\sqrt{2}} \right)$
Sum of $y$ Components=
${{v}_{x}}=R\sin 90+R\sin 45+R\sin 0 \\
\Rightarrow {{v}_{x}}=R+\frac{R}{\sqrt{2}}+0 \\
\Rightarrow {{v}_{x}}=R\left( 1+\frac{1}{\sqrt{2}} \right) \\ $
$\Rightarrow \text{Resultant vector} =\sqrt{v_{x}^{2}+v_{y}^{2}}$
$\Rightarrow \text{Resultant}= \sqrt{{{\left[ R\left( 1+\frac{1}{\sqrt{2}} \right) \right]}^{2}}+{{\left[ R\left( 1+\frac{1}{\sqrt{2}} \right) \right]}^{2}}}$
$\Rightarrow \text{Resultant} =R\sqrt{2{{\left( 1+\frac{1}{\sqrt{2}} \right)}^{2}}}$
$\therefore \text{Resultant}=R\left( \sqrt{2}+1 \right)$
Hence, the resultant of three vectors is $R\left( 1+\sqrt{2} \right)$.
Note:We can use the parallelogram law of vector addition first for two vectors and then using their resultant vector with the third vector to calculate the resultant of three vectors. Do not add the vectors simply and do not forget to find their components to get the resultant vector.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

