
Find the resistance of \[1000\;{\text{meters}}\] of copper wire \[25\;{\text{sq}} \cdot {\text{mm}}\] in cross section. The resistance of copper is \[1/58\;{\text{ohm}}\] per meter length and \[1\;{\text{sq}} \cdot {\text{mm}}\] cross section.
Answer
557.7k+ views
Hint:In this question use the concept of the resistivity, that is it is the material property, it does not depend on the resistance, length, and the cross-section area of the wire. It depends on the material, that is it will be constant for the copper wire.
Complete step by step answer:
In the question, it is given that the copper wire has the length of \[1000\;{\text{meters}}\]and the area of cross section is \[25\;{\text{sq}} \cdot {\text{mm}}\]. And we are also given that the resistance of copper wire is \[1/5{\text{8}}\;{\text{ohm}}\] per meter length and the area of cross section is \[{\text{1}}\;{\text{sq}} \cdot {\text{mm}}\].
For calculating the resistance of the copper wire, we use the resistivity formula,
\[\rho = R\dfrac{A}{l}\]
Here, \[\rho \] is the resistivity of the material in ohm meter, and \[l\] is the length of copper wire, and \[A\] is the area of the cross section of the copper wire.
We substitute the values for the resistivity of the copper if the resistance of copper wire is \[1/5{\text{8}}\;{\text{ohm}}\] per meter or $1000\;{\text{mm}}$ length and the area of cross section is \[{\text{1}}\;{\text{sq}} \cdot {\text{mm}}\].
\[ \Rightarrow \rho = \left( {\dfrac{1}{{58}}} \right)\dfrac{{\left( 1 \right)}}{{\left( {1000} \right)}}\]
After simplification we get,
$ \Rightarrow \rho = \dfrac{1}{{58000}}\;\Omega \cdot {\text{mm}}$
Now, we calculate the resistance for the copper wire has the length of \[1000\;{\text{meters}}\]and the area of cross section is \[25\;{\text{sq}} \cdot {\text{mm}}\].
For calculating the resistance of the copper wire, we use the resistivity formula,
\[\rho = R\dfrac{A}{l}\]
Now we rearrange the above formula
$ \Rightarrow R = \dfrac{{\rho l}}{A}$
Substitute the values in the above equation
\[R = \left( {\dfrac{1}{{58000}}} \right)\left( {\dfrac{{1000 \times {{10}^3}}}{{25}}} \right)\]
After simplification we get,
\[\therefore R = \dfrac{{20}}{{29}}\;\Omega \]
Therefore, the resistance of copper wire is \[\dfrac{{20}}{{29}}\Omega \] and the length of wire is \[1000\;{\text{meters}}\]and \[2{\text{5}}\;{\text{sq}} \cdot {\text{mm}}\] is the cross section.
Note:We know that the resistivity of the material depends on the property of the material, temperature, pressure, and the microstructure of the material. It does not depend on the resistance, length, and the cross-section area of the wire.
Complete step by step answer:
In the question, it is given that the copper wire has the length of \[1000\;{\text{meters}}\]and the area of cross section is \[25\;{\text{sq}} \cdot {\text{mm}}\]. And we are also given that the resistance of copper wire is \[1/5{\text{8}}\;{\text{ohm}}\] per meter length and the area of cross section is \[{\text{1}}\;{\text{sq}} \cdot {\text{mm}}\].
For calculating the resistance of the copper wire, we use the resistivity formula,
\[\rho = R\dfrac{A}{l}\]
Here, \[\rho \] is the resistivity of the material in ohm meter, and \[l\] is the length of copper wire, and \[A\] is the area of the cross section of the copper wire.
We substitute the values for the resistivity of the copper if the resistance of copper wire is \[1/5{\text{8}}\;{\text{ohm}}\] per meter or $1000\;{\text{mm}}$ length and the area of cross section is \[{\text{1}}\;{\text{sq}} \cdot {\text{mm}}\].
\[ \Rightarrow \rho = \left( {\dfrac{1}{{58}}} \right)\dfrac{{\left( 1 \right)}}{{\left( {1000} \right)}}\]
After simplification we get,
$ \Rightarrow \rho = \dfrac{1}{{58000}}\;\Omega \cdot {\text{mm}}$
Now, we calculate the resistance for the copper wire has the length of \[1000\;{\text{meters}}\]and the area of cross section is \[25\;{\text{sq}} \cdot {\text{mm}}\].
For calculating the resistance of the copper wire, we use the resistivity formula,
\[\rho = R\dfrac{A}{l}\]
Now we rearrange the above formula
$ \Rightarrow R = \dfrac{{\rho l}}{A}$
Substitute the values in the above equation
\[R = \left( {\dfrac{1}{{58000}}} \right)\left( {\dfrac{{1000 \times {{10}^3}}}{{25}}} \right)\]
After simplification we get,
\[\therefore R = \dfrac{{20}}{{29}}\;\Omega \]
Therefore, the resistance of copper wire is \[\dfrac{{20}}{{29}}\Omega \] and the length of wire is \[1000\;{\text{meters}}\]and \[2{\text{5}}\;{\text{sq}} \cdot {\text{mm}}\] is the cross section.
Note:We know that the resistivity of the material depends on the property of the material, temperature, pressure, and the microstructure of the material. It does not depend on the resistance, length, and the cross-section area of the wire.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

State the principle of an ac generator and explain class 12 physics CBSE

