Answer
Verified
496.2k+ views
Hint- Here, we will be using the general formula for probability of occurrence of an event. Here, we will be finding out how exactly we will be able to obtain 53 Fridays in a leap year which consists of 52 weeks and 2 days.
As we know that in a leap year, there are 366 days and 7 days is equivalent to 1 week.
Clearly $366 = 364 + 2 = \left( {52 \times 7} \right) + 2 = $52 weeks and 2 days.
So, a leap year consists of 52 weeks and 2 days. In these 52 weeks, there will be 52 Fridays. Hence, the occurrence of 53 Fridays will completely depend on the 2 days left.
According to the general formula for probability in given by
Probability of occurrence of an event$ = \dfrac{{{\text{Number of favourable outcomes}}}}{{{\text{Total number of possible outcomes}}}}{\text{ }} \to {\text{(1)}}$
Here, the favourable event is the occurrence of Friday in any of the two days left.
All the possible cases of the remaining two days are Monday and Tuesday, Tuesday and Wednesday, Wednesday and Thursday, Thursday and Friday, Friday and Saturday, Saturday and Sunday, Sunday and Monday.
Total number of possible outcomes=7
Here, favourable outcomes will count only those cases out of all the possible outcomes in which there is Friday occurring i.e., Thursday and Friday, Friday and Saturday only.
Number of favourable outcomes=2
Using the formula given in equation (1), we get
Probability of getting 53 Fridays in a leap year$ = \dfrac{{\text{2}}}{{\text{7}}}$.
Note- In these types of problems, we find out how many exact weeks are there (in this case it is 52) and how many extra days are left. In these exact weeks, one Friday will be there for sure (i.e., 52 Fridays) and in the remaining days what are the outcomes which will lead to the occurrence of one Friday in any one of the days remaining in order to get 53 Fridays.
As we know that in a leap year, there are 366 days and 7 days is equivalent to 1 week.
Clearly $366 = 364 + 2 = \left( {52 \times 7} \right) + 2 = $52 weeks and 2 days.
So, a leap year consists of 52 weeks and 2 days. In these 52 weeks, there will be 52 Fridays. Hence, the occurrence of 53 Fridays will completely depend on the 2 days left.
According to the general formula for probability in given by
Probability of occurrence of an event$ = \dfrac{{{\text{Number of favourable outcomes}}}}{{{\text{Total number of possible outcomes}}}}{\text{ }} \to {\text{(1)}}$
Here, the favourable event is the occurrence of Friday in any of the two days left.
All the possible cases of the remaining two days are Monday and Tuesday, Tuesday and Wednesday, Wednesday and Thursday, Thursday and Friday, Friday and Saturday, Saturday and Sunday, Sunday and Monday.
Total number of possible outcomes=7
Here, favourable outcomes will count only those cases out of all the possible outcomes in which there is Friday occurring i.e., Thursday and Friday, Friday and Saturday only.
Number of favourable outcomes=2
Using the formula given in equation (1), we get
Probability of getting 53 Fridays in a leap year$ = \dfrac{{\text{2}}}{{\text{7}}}$.
Note- In these types of problems, we find out how many exact weeks are there (in this case it is 52) and how many extra days are left. In these exact weeks, one Friday will be there for sure (i.e., 52 Fridays) and in the remaining days what are the outcomes which will lead to the occurrence of one Friday in any one of the days remaining in order to get 53 Fridays.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE