Answer
Verified
392.4k+ views
Hint: As we can see that there is a pattern of the numbers. Number pattern is a pattern or sequence in a series of numbers. This pattern generally establishes a common relationship between all numbers. In this question we have to find that pattern that binds them all and then apply on them and then we find the next number on the basis of it.
Complete step by step solution:
We have been given a pattern here $41,12,163,94,365,256,\,\_\_\_\_$
We have to analyse the relation between these numbers. Since these are not any perfect squares or there is any addition of numbers between them.
Let us take the alternate series which means there are two series combined in one. The first one is $41,163,365$.
When we add $41 + 122$ we get $163$ and then when we add $163 + 202 = 365$. We should note that the difference between their differences is $80$.
Their differences are $202 - 122 = 80$.
In the second series we have $12,94,256$. Here again we can see that the difference between their differences is $80$ i.e. it can be written as $12( + 82) = 94( + 162) = 256$.
The differences are $162 - 82 = 80$.
So from the above we can write that the next pattern will be $365( + 282) = 647$.
Hence the required next number is (A) $647$.
Note:
In this kind of question we should always try to first find the pattern between the numbers. There are several patterns as there can be differences between the numbers as we can see in Arithmetic progression, there can be a perfect cube of the numbers. For example the series of numbers $8,27,64,125...$. These are the perfect cubes i.e. ${2^3},{3^3},{4^3},{5^3}$, so we can say that the next number in the pattern is ${6^3} = 216$.
Complete step by step solution:
We have been given a pattern here $41,12,163,94,365,256,\,\_\_\_\_$
We have to analyse the relation between these numbers. Since these are not any perfect squares or there is any addition of numbers between them.
Let us take the alternate series which means there are two series combined in one. The first one is $41,163,365$.
When we add $41 + 122$ we get $163$ and then when we add $163 + 202 = 365$. We should note that the difference between their differences is $80$.
Their differences are $202 - 122 = 80$.
In the second series we have $12,94,256$. Here again we can see that the difference between their differences is $80$ i.e. it can be written as $12( + 82) = 94( + 162) = 256$.
The differences are $162 - 82 = 80$.
So from the above we can write that the next pattern will be $365( + 282) = 647$.
Hence the required next number is (A) $647$.
Note:
In this kind of question we should always try to first find the pattern between the numbers. There are several patterns as there can be differences between the numbers as we can see in Arithmetic progression, there can be a perfect cube of the numbers. For example the series of numbers $8,27,64,125...$. These are the perfect cubes i.e. ${2^3},{3^3},{4^3},{5^3}$, so we can say that the next number in the pattern is ${6^3} = 216$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE