
Find the multiplicative inverse of the complex number $-i$.
Answer
606k+ views
Hint: The multiplicative inverse of any number, real or complex, is defined as the number which gives a product 1 when multiplied by the original number. The square root of -1 is an imaginary number called iota. A complex number has a real and an imaginary part and is of the form $a + ib$. The multiplicative inverse of a complex number z is $\dfrac{1}{{\text{z}}}$
Complete step-by-step answer:
We have to find the multiplicative inverse of the complex number $-i$. From the properties of complex number, we can write the multiplicative inverse as-
Let $z = -i$ so,
$\begin{align}
&\dfrac{1}{{\text{z}}} = \dfrac{1}{{ - {\text{i}}}} = - \dfrac{1}{{\text{i}}} \\
&Multiplying\;and\;dividing\;by\;{\text{i}}\;we\;get - \\
&\dfrac{1}{{\text{z}}} = - \dfrac{{\text{i}}}{{{{\text{i}}^2}}} \\
&We\;know\;that\;{{\text{i}}^2} = - 1 \\
&\dfrac{1}{{\text{z}}} = - \dfrac{{\text{i}}}{{ - 1}} = {\text{i}} \\
\end{align} $
Hence the multiplicative inverse of $-i$ is $i$. This is the required answer.
Note: A common mistake is that students leave their answer without further simplification. Whenever we have complex numbers in fractional form, we have to ensure that the denominator is a real number. Hence, we should always factorize the denominator so that it becomes a purely real number. Here, we multiplied and divided by iota to make the denominator -1, which is a real number.
Complete step-by-step answer:
We have to find the multiplicative inverse of the complex number $-i$. From the properties of complex number, we can write the multiplicative inverse as-
Let $z = -i$ so,
$\begin{align}
&\dfrac{1}{{\text{z}}} = \dfrac{1}{{ - {\text{i}}}} = - \dfrac{1}{{\text{i}}} \\
&Multiplying\;and\;dividing\;by\;{\text{i}}\;we\;get - \\
&\dfrac{1}{{\text{z}}} = - \dfrac{{\text{i}}}{{{{\text{i}}^2}}} \\
&We\;know\;that\;{{\text{i}}^2} = - 1 \\
&\dfrac{1}{{\text{z}}} = - \dfrac{{\text{i}}}{{ - 1}} = {\text{i}} \\
\end{align} $
Hence the multiplicative inverse of $-i$ is $i$. This is the required answer.
Note: A common mistake is that students leave their answer without further simplification. Whenever we have complex numbers in fractional form, we have to ensure that the denominator is a real number. Hence, we should always factorize the denominator so that it becomes a purely real number. Here, we multiplied and divided by iota to make the denominator -1, which is a real number.
Recently Updated Pages
Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science


