Answer
Verified
438.6k+ views
Hint: HCF stands for Highest Common Factor. It means that if we factorise all the given numbers, the highest factor that they all will have in common will be our HCF. We have been given the numbers 12, 16 and 28. To find their HCF, we will use the Euclid’s Division Lemma. It is used to find the HCF of two positive integers ‘a’ and ‘b’. According to Euclid’s Division Lemma, two positive integers ‘a’ and ‘b’ can be written as $a=bq+r,0\le r < b$ . Using this, we will first find the HCF of any two of the given three numbers and then we will find the HCF of the third number and the HCF of the first two numbers. Then obtained HCF will be our answer.
Complete step by step answer:
Now, we have the numbers 12, 16 and 28.
We will take the numbers and 12 and 16 first and find their HCF.
Now, according to Euclid’s Division Lemma, $a=bq+r,0\le r < b$ .
We apply this until we get the remainder ‘r’ as ‘0’ taking ‘b’ and ‘r’ as the next ‘a’ and ‘b’ respectively and the value of ‘b’ for which the value of ‘r’ is 0 will be the required HCF.
Here, $16>12$ , therefore, $a=16$ and $b=12$
Applying the division lemma to 16 and 12 we get:
$16=12\left( 1 \right)+4\text{ }\left( \text{here, q=1} \right)$
Since, $r=4\ne 0$, we will apply the division lemma again for 12 and 4.
Applying Euclid’s division lemma for 12 and 4 we get:
$12=4\left( 3 \right)+0\left( \text{here, q=3} \right)$
Here, $r=0$ and $b=4$ .
Thus, the HCF of 12 and 16 is ‘4’.
Now that we have the HCF of ’12’ and ‘16’ as ‘4’, we can find the HCF of ‘4’ and ‘28’ and it will be our required HCF.
Here, $28 > 4$ , therefore, $a=28$ and $b=4$
Applying Euclid’s Division Lemma for 4 and 28 we get
$28=4\left( 7 \right)+0\left( \text{here, q=7} \right)$
Here, $r=0$ and $b=4$.
Thus, the HCF of ‘4’ and ‘28’ is ‘4’.
Thus, our required HCF is ‘4’.
Note: This question can also be done by the following method:
We can factorise 12, 16 and 28 separately and then multiply all their prime factors. Hence, we will get our required HCF.
Factorisation of 12 is shown below:
$\begin{align}
& 2\left| \!{\underline {\,
12 \,}} \right. \\
& 2\left| \!{\underline {\,
6 \,}} \right. \\
& 3\left| \!{\underline {\,
3 \,}} \right. \\
& 1\left| \!{\underline {\,
1 \,}} \right. \\
\end{align}$
Thus, 12 can be written as:
$12={{2}^{2}}\times 3$
Factorisation of 16 is shown below:
$\begin{align}
& 2\left| \!{\underline {\,
16 \,}} \right. \\
& 2\left| \!{\underline {\,
8 \,}} \right. \\
& 2\left| \!{\underline {\,
4 \,}} \right. \\
& 2\left| \!{\underline {\,
2 \,}} \right. \\
& 1\left| \!{\underline {\,
1 \,}} \right. \\
\end{align}$
Thus, 16 can be written as:
$16={{2}^{4}}$
Factorisation of 28 is shown below:
$\begin{align}
& 2\left| \!{\underline {\,
28 \,}} \right. \\
& 2\left| \!{\underline {\,
14 \,}} \right. \\
& 7\left| \!{\underline {\,
7 \,}} \right. \\
& 1\left| \!{\underline {\,
1 \,}} \right. \\
\end{align}$
Thus, 28 can be written as:
$28={{2}^{2}}\times 7$
Here, we can see that ${{2}^{2}}$ is a common factor for all the three numbers.
Thus, $HCF={{2}^{2}}=4$
Complete step by step answer:
Now, we have the numbers 12, 16 and 28.
We will take the numbers and 12 and 16 first and find their HCF.
Now, according to Euclid’s Division Lemma, $a=bq+r,0\le r < b$ .
We apply this until we get the remainder ‘r’ as ‘0’ taking ‘b’ and ‘r’ as the next ‘a’ and ‘b’ respectively and the value of ‘b’ for which the value of ‘r’ is 0 will be the required HCF.
Here, $16>12$ , therefore, $a=16$ and $b=12$
Applying the division lemma to 16 and 12 we get:
$16=12\left( 1 \right)+4\text{ }\left( \text{here, q=1} \right)$
Since, $r=4\ne 0$, we will apply the division lemma again for 12 and 4.
Applying Euclid’s division lemma for 12 and 4 we get:
$12=4\left( 3 \right)+0\left( \text{here, q=3} \right)$
Here, $r=0$ and $b=4$ .
Thus, the HCF of 12 and 16 is ‘4’.
Now that we have the HCF of ’12’ and ‘16’ as ‘4’, we can find the HCF of ‘4’ and ‘28’ and it will be our required HCF.
Here, $28 > 4$ , therefore, $a=28$ and $b=4$
Applying Euclid’s Division Lemma for 4 and 28 we get
$28=4\left( 7 \right)+0\left( \text{here, q=7} \right)$
Here, $r=0$ and $b=4$.
Thus, the HCF of ‘4’ and ‘28’ is ‘4’.
Thus, our required HCF is ‘4’.
Note: This question can also be done by the following method:
We can factorise 12, 16 and 28 separately and then multiply all their prime factors. Hence, we will get our required HCF.
Factorisation of 12 is shown below:
$\begin{align}
& 2\left| \!{\underline {\,
12 \,}} \right. \\
& 2\left| \!{\underline {\,
6 \,}} \right. \\
& 3\left| \!{\underline {\,
3 \,}} \right. \\
& 1\left| \!{\underline {\,
1 \,}} \right. \\
\end{align}$
Thus, 12 can be written as:
$12={{2}^{2}}\times 3$
Factorisation of 16 is shown below:
$\begin{align}
& 2\left| \!{\underline {\,
16 \,}} \right. \\
& 2\left| \!{\underline {\,
8 \,}} \right. \\
& 2\left| \!{\underline {\,
4 \,}} \right. \\
& 2\left| \!{\underline {\,
2 \,}} \right. \\
& 1\left| \!{\underline {\,
1 \,}} \right. \\
\end{align}$
Thus, 16 can be written as:
$16={{2}^{4}}$
Factorisation of 28 is shown below:
$\begin{align}
& 2\left| \!{\underline {\,
28 \,}} \right. \\
& 2\left| \!{\underline {\,
14 \,}} \right. \\
& 7\left| \!{\underline {\,
7 \,}} \right. \\
& 1\left| \!{\underline {\,
1 \,}} \right. \\
\end{align}$
Thus, 28 can be written as:
$28={{2}^{2}}\times 7$
Here, we can see that ${{2}^{2}}$ is a common factor for all the three numbers.
Thus, $HCF={{2}^{2}}=4$
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE