
How do you find the exact functional value of $\sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ }$ using the cosine sum or difference identity?
Answer
548.4k+ views
Hint: This problem deals with trigonometric sum to product identities. Given an equation, we have to find the number of solutions of the equation. Which means that there are several solutions of the equation and hence we have to find the general solution of the equation. The formula used here is the trigonometric sum to product formula, which is given by:
$ \Rightarrow \sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$
$ \Rightarrow \sin C - \sin D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{C - D}}{2}} \right)$
Complete step-by-step solution:
From the above trigonometric sum to product formulas, we can rearrange the formulas in such a way that as shown below:
$ \Rightarrow \sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$
From here dividing the above equation by 2, gives:
$ \Rightarrow \dfrac{1}{2}\left( {\sin C + \sin D} \right) = \sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$
So the trigonometric product to sum identity becomes, as shown below:
$ \Rightarrow \sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) = \dfrac{1}{2}\left( {\sin C + \sin D} \right)$
Similarly for the identity $\sin C - \sin D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{C - D}}{2}} \right)$, as shown below:
$ \Rightarrow \cos \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{C - D}}{2}} \right) = \dfrac{1}{2}\left( {\sin C - \sin D} \right)$
Given $\sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ }$, now consider the first part of the expression, as given below:
$ \Rightarrow \sin {110^ \circ }\cos {20^ \circ }$
The above expression is in the form of $\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$, on comparing :
Here $\dfrac{{C + D}}{2} = {110^ \circ }$ and $\dfrac{{C - D}}{2} = {20^ \circ }$
Which gives $C + D = {220^ \circ }$ and $C - D = {40^ \circ }$, solving these two equations gives:
Hence $C = {130^ \circ }$ and $D = {90^ \circ }$
Now applying the trigonometric product to sum identity to $\sin {110^ \circ }\cos {20^ \circ }$, as given below:
$\therefore \sin {110^ \circ }\cos {20^ \circ } = \dfrac{1}{2}\left( {\sin {{130}^ \circ } + \sin {{90}^ \circ }} \right)$
Now consider the second part of the expression of $\sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ }$, as given below:
$ \Rightarrow \cos {110^ \circ }\sin {20^ \circ }$
$\therefore \cos {110^ \circ }\sin {20^ \circ } = \dfrac{1}{2}\left( {\sin {{130}^ \circ } - \sin {{90}^ \circ }} \right)$
Now consider the given expression $\sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ }$, as given below:
$ \Rightarrow \sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ } = \dfrac{1}{2}\left( {\sin {{130}^ \circ } + \sin {{90}^ \circ }} \right) - \dfrac{1}{2}\left( {\sin {{130}^ \circ } - \sin {{90}^ \circ }} \right)$
$ \Rightarrow \sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ } = \dfrac{1}{2}\left( {\sin {{130}^ \circ } + \sin {{90}^ \circ } - \sin {{130}^ \circ } + \sin {{90}^ \circ }} \right)$
Here $\sin {130^ \circ }$ gets cancelled on the right hand side of the above equation, as given below:
$ \Rightarrow \sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ } = \dfrac{1}{2}\left( {\sin {{90}^ \circ } + \sin {{90}^ \circ }} \right)$
We know that $\sin {90^ \circ } = 1$, hence substituting it in the above equation:
$ \Rightarrow \sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ } = \dfrac{1}{2}\left( {1 + 1} \right)$
$ \Rightarrow \sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ } = \dfrac{1}{2}\left( 2 \right)$
$\therefore \sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ } = 1$
The value of $\sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ }$ is 1.
Note: While solving this problem, we need to understand that throughout the problem we used one of the trigonometric sum to product formula, there are totally four such trigonometric sum to product formulas, which are given by:
\[ \Rightarrow \sin C + \sin D = 2\sin (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2})\]
\[ \Rightarrow \sin C - \sin D = 2\cos (\dfrac{{C + D}}{2})\sin (\dfrac{{C - D}}{2})\]
\[ \Rightarrow \cos C + \cos D = 2\cos (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2})\]
\[ \Rightarrow \cos C - \cos D = - 2\sin (\dfrac{{C + D}}{2})\sin (\dfrac{{C - D}}{2})\]
$ \Rightarrow \sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$
$ \Rightarrow \sin C - \sin D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{C - D}}{2}} \right)$
Complete step-by-step solution:
From the above trigonometric sum to product formulas, we can rearrange the formulas in such a way that as shown below:
$ \Rightarrow \sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$
From here dividing the above equation by 2, gives:
$ \Rightarrow \dfrac{1}{2}\left( {\sin C + \sin D} \right) = \sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$
So the trigonometric product to sum identity becomes, as shown below:
$ \Rightarrow \sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) = \dfrac{1}{2}\left( {\sin C + \sin D} \right)$
Similarly for the identity $\sin C - \sin D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{C - D}}{2}} \right)$, as shown below:
$ \Rightarrow \cos \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{C - D}}{2}} \right) = \dfrac{1}{2}\left( {\sin C - \sin D} \right)$
Given $\sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ }$, now consider the first part of the expression, as given below:
$ \Rightarrow \sin {110^ \circ }\cos {20^ \circ }$
The above expression is in the form of $\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$, on comparing :
Here $\dfrac{{C + D}}{2} = {110^ \circ }$ and $\dfrac{{C - D}}{2} = {20^ \circ }$
Which gives $C + D = {220^ \circ }$ and $C - D = {40^ \circ }$, solving these two equations gives:
Hence $C = {130^ \circ }$ and $D = {90^ \circ }$
Now applying the trigonometric product to sum identity to $\sin {110^ \circ }\cos {20^ \circ }$, as given below:
$\therefore \sin {110^ \circ }\cos {20^ \circ } = \dfrac{1}{2}\left( {\sin {{130}^ \circ } + \sin {{90}^ \circ }} \right)$
Now consider the second part of the expression of $\sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ }$, as given below:
$ \Rightarrow \cos {110^ \circ }\sin {20^ \circ }$
$\therefore \cos {110^ \circ }\sin {20^ \circ } = \dfrac{1}{2}\left( {\sin {{130}^ \circ } - \sin {{90}^ \circ }} \right)$
Now consider the given expression $\sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ }$, as given below:
$ \Rightarrow \sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ } = \dfrac{1}{2}\left( {\sin {{130}^ \circ } + \sin {{90}^ \circ }} \right) - \dfrac{1}{2}\left( {\sin {{130}^ \circ } - \sin {{90}^ \circ }} \right)$
$ \Rightarrow \sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ } = \dfrac{1}{2}\left( {\sin {{130}^ \circ } + \sin {{90}^ \circ } - \sin {{130}^ \circ } + \sin {{90}^ \circ }} \right)$
Here $\sin {130^ \circ }$ gets cancelled on the right hand side of the above equation, as given below:
$ \Rightarrow \sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ } = \dfrac{1}{2}\left( {\sin {{90}^ \circ } + \sin {{90}^ \circ }} \right)$
We know that $\sin {90^ \circ } = 1$, hence substituting it in the above equation:
$ \Rightarrow \sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ } = \dfrac{1}{2}\left( {1 + 1} \right)$
$ \Rightarrow \sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ } = \dfrac{1}{2}\left( 2 \right)$
$\therefore \sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ } = 1$
The value of $\sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ }$ is 1.
Note: While solving this problem, we need to understand that throughout the problem we used one of the trigonometric sum to product formula, there are totally four such trigonometric sum to product formulas, which are given by:
\[ \Rightarrow \sin C + \sin D = 2\sin (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2})\]
\[ \Rightarrow \sin C - \sin D = 2\cos (\dfrac{{C + D}}{2})\sin (\dfrac{{C - D}}{2})\]
\[ \Rightarrow \cos C + \cos D = 2\cos (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2})\]
\[ \Rightarrow \cos C - \cos D = - 2\sin (\dfrac{{C + D}}{2})\sin (\dfrac{{C - D}}{2})\]
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

