
Find the derivative of \[x\cos x\].
Answer
481.2k+ views
Hint: We need to find the derivative of \[x\cos x\]. We see that the given term is a product of two functions. And so, we need to apply the product rule, which states that:
\[\left( {uv} \right)' = u'v + uv'\]
Where \[u\] and \[v\] are two functions and \[u' = \dfrac{d}{{dx}}\left( u \right)\].
We will then use the basic derivative formulas for \[x\] and \[\cos x\] and then substitute in the above formula.
Complete step-by-step solution:
Finding the derivative of \[x\cos x\] i.e. \[\dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {x\cos x} \right)'\]
Taking \[x = u - - - - - - (1)\]
And \[\cos x = v - - - - - - (2)\]
Using (1) , (2) and Product Rule i.e. \[\left( {uv} \right)' = u'v + uv'\], we have
\[\left( {x\cos x} \right)' = \left( {\left( x \right)' \times \cos x} \right) + \left( {x \times \left( {\cos x} \right)'} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {\dfrac{d}{{dx}}\left( x \right)} \right) \times \cos x} \right) + \left( {x \times \left( {\dfrac{d}{{dx}}\left( {\cos x} \right)} \right)} \right) - - - - - - (3)\]
We know,
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} - - - - - - (4)\]
And \[\dfrac{d}{{dx}}\left( {\cos x} \right) = \left( { - \sin x} \right) - - - - - - (5)\]
Using (4) and (5) in (3), we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times {x^{1 - 1}}} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times {x^0}} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
As we know, \[{x^0} = 1\]. Using this, we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times 1} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( 1 \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
Using \[1 \times a = a\], we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\cos x} \right) + \left( { - x\sin x} \right)\]
Using \[ + \left( { - f(x)} \right) = - f(x)\], we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \cos x - x\sin x\], which is the required answer.
Hence, the derivative of \[x\cos x\] is \[\cos x - x\sin x\].
Note: We need to remember that when the product of two functions is given, we have to use the product rule always. While using the product rule, we can choose any function to be \[u\] or \[v\]. It’s just that we need to apply the formula correctly and remember that the derivative of \[\cos x\] is negative of \[\sin x\] and not just \[\sin x\].
\[\left( {uv} \right)' = u'v + uv'\]
Where \[u\] and \[v\] are two functions and \[u' = \dfrac{d}{{dx}}\left( u \right)\].
We will then use the basic derivative formulas for \[x\] and \[\cos x\] and then substitute in the above formula.
Complete step-by-step solution:
Finding the derivative of \[x\cos x\] i.e. \[\dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {x\cos x} \right)'\]
Taking \[x = u - - - - - - (1)\]
And \[\cos x = v - - - - - - (2)\]
Using (1) , (2) and Product Rule i.e. \[\left( {uv} \right)' = u'v + uv'\], we have
\[\left( {x\cos x} \right)' = \left( {\left( x \right)' \times \cos x} \right) + \left( {x \times \left( {\cos x} \right)'} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {\dfrac{d}{{dx}}\left( x \right)} \right) \times \cos x} \right) + \left( {x \times \left( {\dfrac{d}{{dx}}\left( {\cos x} \right)} \right)} \right) - - - - - - (3)\]
We know,
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} - - - - - - (4)\]
And \[\dfrac{d}{{dx}}\left( {\cos x} \right) = \left( { - \sin x} \right) - - - - - - (5)\]
Using (4) and (5) in (3), we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times {x^{1 - 1}}} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times {x^0}} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
As we know, \[{x^0} = 1\]. Using this, we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times 1} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( 1 \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
Using \[1 \times a = a\], we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\cos x} \right) + \left( { - x\sin x} \right)\]
Using \[ + \left( { - f(x)} \right) = - f(x)\], we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \cos x - x\sin x\], which is the required answer.
Hence, the derivative of \[x\cos x\] is \[\cos x - x\sin x\].
Note: We need to remember that when the product of two functions is given, we have to use the product rule always. While using the product rule, we can choose any function to be \[u\] or \[v\]. It’s just that we need to apply the formula correctly and remember that the derivative of \[\cos x\] is negative of \[\sin x\] and not just \[\sin x\].
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

