
Find the derivative of \[x\cos x\].
Answer
495.3k+ views
Hint: We need to find the derivative of \[x\cos x\]. We see that the given term is a product of two functions. And so, we need to apply the product rule, which states that:
\[\left( {uv} \right)' = u'v + uv'\]
Where \[u\] and \[v\] are two functions and \[u' = \dfrac{d}{{dx}}\left( u \right)\].
We will then use the basic derivative formulas for \[x\] and \[\cos x\] and then substitute in the above formula.
Complete step-by-step solution:
Finding the derivative of \[x\cos x\] i.e. \[\dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {x\cos x} \right)'\]
Taking \[x = u - - - - - - (1)\]
And \[\cos x = v - - - - - - (2)\]
Using (1) , (2) and Product Rule i.e. \[\left( {uv} \right)' = u'v + uv'\], we have
\[\left( {x\cos x} \right)' = \left( {\left( x \right)' \times \cos x} \right) + \left( {x \times \left( {\cos x} \right)'} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {\dfrac{d}{{dx}}\left( x \right)} \right) \times \cos x} \right) + \left( {x \times \left( {\dfrac{d}{{dx}}\left( {\cos x} \right)} \right)} \right) - - - - - - (3)\]
We know,
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} - - - - - - (4)\]
And \[\dfrac{d}{{dx}}\left( {\cos x} \right) = \left( { - \sin x} \right) - - - - - - (5)\]
Using (4) and (5) in (3), we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times {x^{1 - 1}}} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times {x^0}} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
As we know, \[{x^0} = 1\]. Using this, we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times 1} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( 1 \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
Using \[1 \times a = a\], we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\cos x} \right) + \left( { - x\sin x} \right)\]
Using \[ + \left( { - f(x)} \right) = - f(x)\], we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \cos x - x\sin x\], which is the required answer.
Hence, the derivative of \[x\cos x\] is \[\cos x - x\sin x\].
Note: We need to remember that when the product of two functions is given, we have to use the product rule always. While using the product rule, we can choose any function to be \[u\] or \[v\]. It’s just that we need to apply the formula correctly and remember that the derivative of \[\cos x\] is negative of \[\sin x\] and not just \[\sin x\].
\[\left( {uv} \right)' = u'v + uv'\]
Where \[u\] and \[v\] are two functions and \[u' = \dfrac{d}{{dx}}\left( u \right)\].
We will then use the basic derivative formulas for \[x\] and \[\cos x\] and then substitute in the above formula.
Complete step-by-step solution:
Finding the derivative of \[x\cos x\] i.e. \[\dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {x\cos x} \right)'\]
Taking \[x = u - - - - - - (1)\]
And \[\cos x = v - - - - - - (2)\]
Using (1) , (2) and Product Rule i.e. \[\left( {uv} \right)' = u'v + uv'\], we have
\[\left( {x\cos x} \right)' = \left( {\left( x \right)' \times \cos x} \right) + \left( {x \times \left( {\cos x} \right)'} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {\dfrac{d}{{dx}}\left( x \right)} \right) \times \cos x} \right) + \left( {x \times \left( {\dfrac{d}{{dx}}\left( {\cos x} \right)} \right)} \right) - - - - - - (3)\]
We know,
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} - - - - - - (4)\]
And \[\dfrac{d}{{dx}}\left( {\cos x} \right) = \left( { - \sin x} \right) - - - - - - (5)\]
Using (4) and (5) in (3), we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times {x^{1 - 1}}} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times {x^0}} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
As we know, \[{x^0} = 1\]. Using this, we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times 1} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( 1 \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
Using \[1 \times a = a\], we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\cos x} \right) + \left( { - x\sin x} \right)\]
Using \[ + \left( { - f(x)} \right) = - f(x)\], we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \cos x - x\sin x\], which is the required answer.
Hence, the derivative of \[x\cos x\] is \[\cos x - x\sin x\].
Note: We need to remember that when the product of two functions is given, we have to use the product rule always. While using the product rule, we can choose any function to be \[u\] or \[v\]. It’s just that we need to apply the formula correctly and remember that the derivative of \[\cos x\] is negative of \[\sin x\] and not just \[\sin x\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

In a human foetus the limbs and digits develop after class 12 biology CBSE

AABbCc genotype forms how many types of gametes a 4 class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

