
Find the derivative of \[x\cos x\].
Answer
495.3k+ views
Hint: We need to find the derivative of \[x\cos x\]. We see that the given term is a product of two functions. And so, we need to apply the product rule, which states that:
\[\left( {uv} \right)' = u'v + uv'\]
Where \[u\] and \[v\] are two functions and \[u' = \dfrac{d}{{dx}}\left( u \right)\].
We will then use the basic derivative formulas for \[x\] and \[\cos x\] and then substitute in the above formula.
Complete step-by-step solution:
Finding the derivative of \[x\cos x\] i.e. \[\dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {x\cos x} \right)'\]
Taking \[x = u - - - - - - (1)\]
And \[\cos x = v - - - - - - (2)\]
Using (1) , (2) and Product Rule i.e. \[\left( {uv} \right)' = u'v + uv'\], we have
\[\left( {x\cos x} \right)' = \left( {\left( x \right)' \times \cos x} \right) + \left( {x \times \left( {\cos x} \right)'} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {\dfrac{d}{{dx}}\left( x \right)} \right) \times \cos x} \right) + \left( {x \times \left( {\dfrac{d}{{dx}}\left( {\cos x} \right)} \right)} \right) - - - - - - (3)\]
We know,
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} - - - - - - (4)\]
And \[\dfrac{d}{{dx}}\left( {\cos x} \right) = \left( { - \sin x} \right) - - - - - - (5)\]
Using (4) and (5) in (3), we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times {x^{1 - 1}}} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times {x^0}} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
As we know, \[{x^0} = 1\]. Using this, we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times 1} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( 1 \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
Using \[1 \times a = a\], we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\cos x} \right) + \left( { - x\sin x} \right)\]
Using \[ + \left( { - f(x)} \right) = - f(x)\], we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \cos x - x\sin x\], which is the required answer.
Hence, the derivative of \[x\cos x\] is \[\cos x - x\sin x\].
Note: We need to remember that when the product of two functions is given, we have to use the product rule always. While using the product rule, we can choose any function to be \[u\] or \[v\]. It’s just that we need to apply the formula correctly and remember that the derivative of \[\cos x\] is negative of \[\sin x\] and not just \[\sin x\].
\[\left( {uv} \right)' = u'v + uv'\]
Where \[u\] and \[v\] are two functions and \[u' = \dfrac{d}{{dx}}\left( u \right)\].
We will then use the basic derivative formulas for \[x\] and \[\cos x\] and then substitute in the above formula.
Complete step-by-step solution:
Finding the derivative of \[x\cos x\] i.e. \[\dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {x\cos x} \right)'\]
Taking \[x = u - - - - - - (1)\]
And \[\cos x = v - - - - - - (2)\]
Using (1) , (2) and Product Rule i.e. \[\left( {uv} \right)' = u'v + uv'\], we have
\[\left( {x\cos x} \right)' = \left( {\left( x \right)' \times \cos x} \right) + \left( {x \times \left( {\cos x} \right)'} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {\dfrac{d}{{dx}}\left( x \right)} \right) \times \cos x} \right) + \left( {x \times \left( {\dfrac{d}{{dx}}\left( {\cos x} \right)} \right)} \right) - - - - - - (3)\]
We know,
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} - - - - - - (4)\]
And \[\dfrac{d}{{dx}}\left( {\cos x} \right) = \left( { - \sin x} \right) - - - - - - (5)\]
Using (4) and (5) in (3), we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times {x^{1 - 1}}} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times {x^0}} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
As we know, \[{x^0} = 1\]. Using this, we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times 1} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( 1 \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
Using \[1 \times a = a\], we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\cos x} \right) + \left( { - x\sin x} \right)\]
Using \[ + \left( { - f(x)} \right) = - f(x)\], we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \cos x - x\sin x\], which is the required answer.
Hence, the derivative of \[x\cos x\] is \[\cos x - x\sin x\].
Note: We need to remember that when the product of two functions is given, we have to use the product rule always. While using the product rule, we can choose any function to be \[u\] or \[v\]. It’s just that we need to apply the formula correctly and remember that the derivative of \[\cos x\] is negative of \[\sin x\] and not just \[\sin x\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

