
Find the derivative of \[x\cos x\].
Answer
481.2k+ views
Hint: We need to find the derivative of \[x\cos x\]. We see that the given term is a product of two functions. And so, we need to apply the product rule, which states that:
\[\left( {uv} \right)' = u'v + uv'\]
Where \[u\] and \[v\] are two functions and \[u' = \dfrac{d}{{dx}}\left( u \right)\].
We will then use the basic derivative formulas for \[x\] and \[\cos x\] and then substitute in the above formula.
Complete step-by-step solution:
Finding the derivative of \[x\cos x\] i.e. \[\dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {x\cos x} \right)'\]
Taking \[x = u - - - - - - (1)\]
And \[\cos x = v - - - - - - (2)\]
Using (1) , (2) and Product Rule i.e. \[\left( {uv} \right)' = u'v + uv'\], we have
\[\left( {x\cos x} \right)' = \left( {\left( x \right)' \times \cos x} \right) + \left( {x \times \left( {\cos x} \right)'} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {\dfrac{d}{{dx}}\left( x \right)} \right) \times \cos x} \right) + \left( {x \times \left( {\dfrac{d}{{dx}}\left( {\cos x} \right)} \right)} \right) - - - - - - (3)\]
We know,
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} - - - - - - (4)\]
And \[\dfrac{d}{{dx}}\left( {\cos x} \right) = \left( { - \sin x} \right) - - - - - - (5)\]
Using (4) and (5) in (3), we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times {x^{1 - 1}}} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times {x^0}} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
As we know, \[{x^0} = 1\]. Using this, we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times 1} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( 1 \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
Using \[1 \times a = a\], we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\cos x} \right) + \left( { - x\sin x} \right)\]
Using \[ + \left( { - f(x)} \right) = - f(x)\], we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \cos x - x\sin x\], which is the required answer.
Hence, the derivative of \[x\cos x\] is \[\cos x - x\sin x\].
Note: We need to remember that when the product of two functions is given, we have to use the product rule always. While using the product rule, we can choose any function to be \[u\] or \[v\]. It’s just that we need to apply the formula correctly and remember that the derivative of \[\cos x\] is negative of \[\sin x\] and not just \[\sin x\].
\[\left( {uv} \right)' = u'v + uv'\]
Where \[u\] and \[v\] are two functions and \[u' = \dfrac{d}{{dx}}\left( u \right)\].
We will then use the basic derivative formulas for \[x\] and \[\cos x\] and then substitute in the above formula.
Complete step-by-step solution:
Finding the derivative of \[x\cos x\] i.e. \[\dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {x\cos x} \right)'\]
Taking \[x = u - - - - - - (1)\]
And \[\cos x = v - - - - - - (2)\]
Using (1) , (2) and Product Rule i.e. \[\left( {uv} \right)' = u'v + uv'\], we have
\[\left( {x\cos x} \right)' = \left( {\left( x \right)' \times \cos x} \right) + \left( {x \times \left( {\cos x} \right)'} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {\dfrac{d}{{dx}}\left( x \right)} \right) \times \cos x} \right) + \left( {x \times \left( {\dfrac{d}{{dx}}\left( {\cos x} \right)} \right)} \right) - - - - - - (3)\]
We know,
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} - - - - - - (4)\]
And \[\dfrac{d}{{dx}}\left( {\cos x} \right) = \left( { - \sin x} \right) - - - - - - (5)\]
Using (4) and (5) in (3), we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times {x^{1 - 1}}} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times {x^0}} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
As we know, \[{x^0} = 1\]. Using this, we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( {1 \times 1} \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\left( 1 \right) \times \cos x} \right) + \left( {x \times \left( { - \sin x} \right)} \right)\]
Using \[1 \times a = a\], we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \left( {\cos x} \right) + \left( { - x\sin x} \right)\]
Using \[ + \left( { - f(x)} \right) = - f(x)\], we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \cos x - x\sin x\], which is the required answer.
Hence, the derivative of \[x\cos x\] is \[\cos x - x\sin x\].
Note: We need to remember that when the product of two functions is given, we have to use the product rule always. While using the product rule, we can choose any function to be \[u\] or \[v\]. It’s just that we need to apply the formula correctly and remember that the derivative of \[\cos x\] is negative of \[\sin x\] and not just \[\sin x\].
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

