
Find the derivative of the following function from the first principle: $\sin (x+1)$ .
Answer
597.9k+ views
Hint: The given problem is related to differentiation. According to the first principle, the derivative of a function $f\left( x \right)$ at $x=a$ is given as $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}$ .
Complete Step-by-step answer:
Before proceeding with the problem, let’s understand the concept of differentiation. The derivative of a function represents the slope of the graph of the function. The derivative of the function $f\left( x \right)$ is denoted by $f'\left( x \right)$ and is defined by the first principle as $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ . The steps to determine the derivative of a function by the first principle are :
Step 1: Write down the formula for finding the derivative by the first principle.
Step 2: Determine the value of $f\left( x+h \right)$ .
Step 3: Substitute it into the formula.
Step 4: Find the limit.
Now, the given function is $\sin \left( x+1 \right)$ .
Following the steps stated above, first we will write the formula for finding the derivative of the function by the first principle.
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ .
Now, we will find the value of f(x+ h) by replacing x by (x + h). The function is given as $f\left( x \right)=\sin \left( x+1 \right)$ . So, the value of $f\left( x+h \right)$ is given as $\sin \left( x+1+h \right)$ , which can be written as $\sin \left( \left( x+1 \right)+h \right)$ . We know, $\sin \left( a+b \right)=\sin a\cos b+\cos a\sin b$ . So, $\sin \left( \left( x+1 \right)+h \right)=\sin \left( x+1 \right)\cos \left( h \right)+\cos \left( x+1 \right)\sin \left( h \right)$ .
On substituting the value of f(x + h) in the expression for derivative of a function, we get:$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+1 \right)\cos \left( h \right)+\cos \left( x+1 \right)\sin \left( h \right)-\sin \left( x+1 \right)}{h}$
Now, we will evaluate the limit. The expression that we have is:$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+1 \right)\cos \left( h \right)+\cos \left( x+1 \right)\sin \left( h \right)-\sin \left( x+1 \right)}{h}$
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+1 \right)\left( \cos \left( h \right)-1 \right)+\cos \left( x+1 \right)\sin \left( h \right)}{h}$
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+1 \right)\left( \cos \left( h \right)-1 \right)}{h}+\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cos \left( x+1 \right)\sin \left( h \right)}{h}$
Now, we know $\sin \left( x+1 \right)$ is a function of $x$ and is independent of $h$ . So, $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+1 \right)\left( \cos \left( h \right)-1 \right)}{h}=\sin \left( x+1 \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \cos \left( h \right)-1 \right)}{h}$. Now, we know, $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \cos \left( h \right)-1 \right)}{h}=0$ . So, $f'\left( x \right)=\sin \left( x+1 \right)\times 0+\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cos \left( x+1 \right)\sin \left( h \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cos \left( x+1 \right)\sin \left( h \right)}{h}$. Now, we know, \[\cos \left( x+1 \right)\] is a function of $x$ and hence, it is independent of $h$ . So, $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cos \left( x+1 \right)\sin \left( h \right)}{h}$ can be written as $f'\left( x \right)=\cos \left( x+1 \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( h \right)}{h}$. Now, we know, $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( h \right)}{h}=1$ . So, $f'\left( x \right)=\cos \left( x+1 \right)$ .
Hence, the derivative of $\sin (x+1)$ is $\cos \left( x+1 \right)$ .
Note: While determining the derivative of the function, make sure to use the expansions and formulae of the limit properly. Some students write the expansion of $\sin \left( a+b \right)$ as $\sin a\cos b-\cos a\sin b$ instead of $\sin a\cos b+\cos a\sin b$ . Also, some students write the value of the limit $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( h \right)}{h}=0$ instead of $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( h \right)}{h}=1$. Such mistakes should be avoided, as they can result in getting wrong answers.
Complete Step-by-step answer:
Before proceeding with the problem, let’s understand the concept of differentiation. The derivative of a function represents the slope of the graph of the function. The derivative of the function $f\left( x \right)$ is denoted by $f'\left( x \right)$ and is defined by the first principle as $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ . The steps to determine the derivative of a function by the first principle are :
Step 1: Write down the formula for finding the derivative by the first principle.
Step 2: Determine the value of $f\left( x+h \right)$ .
Step 3: Substitute it into the formula.
Step 4: Find the limit.
Now, the given function is $\sin \left( x+1 \right)$ .
Following the steps stated above, first we will write the formula for finding the derivative of the function by the first principle.
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ .
Now, we will find the value of f(x+ h) by replacing x by (x + h). The function is given as $f\left( x \right)=\sin \left( x+1 \right)$ . So, the value of $f\left( x+h \right)$ is given as $\sin \left( x+1+h \right)$ , which can be written as $\sin \left( \left( x+1 \right)+h \right)$ . We know, $\sin \left( a+b \right)=\sin a\cos b+\cos a\sin b$ . So, $\sin \left( \left( x+1 \right)+h \right)=\sin \left( x+1 \right)\cos \left( h \right)+\cos \left( x+1 \right)\sin \left( h \right)$ .
On substituting the value of f(x + h) in the expression for derivative of a function, we get:$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+1 \right)\cos \left( h \right)+\cos \left( x+1 \right)\sin \left( h \right)-\sin \left( x+1 \right)}{h}$
Now, we will evaluate the limit. The expression that we have is:$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+1 \right)\cos \left( h \right)+\cos \left( x+1 \right)\sin \left( h \right)-\sin \left( x+1 \right)}{h}$
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+1 \right)\left( \cos \left( h \right)-1 \right)+\cos \left( x+1 \right)\sin \left( h \right)}{h}$
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+1 \right)\left( \cos \left( h \right)-1 \right)}{h}+\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cos \left( x+1 \right)\sin \left( h \right)}{h}$
Now, we know $\sin \left( x+1 \right)$ is a function of $x$ and is independent of $h$ . So, $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( x+1 \right)\left( \cos \left( h \right)-1 \right)}{h}=\sin \left( x+1 \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \cos \left( h \right)-1 \right)}{h}$. Now, we know, $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \cos \left( h \right)-1 \right)}{h}=0$ . So, $f'\left( x \right)=\sin \left( x+1 \right)\times 0+\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cos \left( x+1 \right)\sin \left( h \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cos \left( x+1 \right)\sin \left( h \right)}{h}$. Now, we know, \[\cos \left( x+1 \right)\] is a function of $x$ and hence, it is independent of $h$ . So, $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cos \left( x+1 \right)\sin \left( h \right)}{h}$ can be written as $f'\left( x \right)=\cos \left( x+1 \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( h \right)}{h}$. Now, we know, $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( h \right)}{h}=1$ . So, $f'\left( x \right)=\cos \left( x+1 \right)$ .
Hence, the derivative of $\sin (x+1)$ is $\cos \left( x+1 \right)$ .
Note: While determining the derivative of the function, make sure to use the expansions and formulae of the limit properly. Some students write the expansion of $\sin \left( a+b \right)$ as $\sin a\cos b-\cos a\sin b$ instead of $\sin a\cos b+\cos a\sin b$ . Also, some students write the value of the limit $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( h \right)}{h}=0$ instead of $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( h \right)}{h}=1$. Such mistakes should be avoided, as they can result in getting wrong answers.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

