
How do you find the derivative of $\dfrac{1}{2}\sin 2x$?
Answer
542.4k+ views
Hint: The given function $\dfrac{1}{2}\sin 2x$ is a composite function. We have to use the chain rule for the derivation. We derive the main function with respect to the secondary one. Then we take the derivation of the secondary function with respect to $x$. We take the multiplication of these two functions.
Complete step by step solution:
We differentiate the given function $f\left( x \right)=\dfrac{1}{2}\sin 2x$ with respect to $x$ using the chain rule.
Here we have a composite function where the main function is $g\left( x \right)=\sin x$ and the other function is $h\left( x \right)=2x$.
We have $goh\left( x \right)=g\left( 2x \right)=\sin 2x$. We take this as ours $f\left( x \right)=\dfrac{1}{2}\sin 2x$.
We need to find the value of $\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ \dfrac{1}{2}\sin 2x \right]$. We know $f\left( x \right)=\dfrac{1}{2}goh\left( x \right)$.
Differentiating $f\left( x \right)=\dfrac{1}{2}goh\left( x \right)$, we get
\[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ goh\left( x \right) \right]=\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}={{g}^{'}}\left[ h\left( x \right) \right]{{h}^{'}}\left( x \right)\].
The above-mentioned rule is the chain rule.
The chain rule allows us to differentiate with respect to the function $h\left( x \right)$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)$ with respect to $x$.
For the function $f\left( x \right)=\dfrac{1}{2}\sin 2x$, we take differentiation of $f\left( x \right)=\dfrac{1}{2}\sin 2x$ with respect to the function $h\left( x \right)=2x$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)=2x$ with respect to $x$.
The differentiation of $g\left( x \right)=\sin x$ is ${{g}^{'}}\left( x \right)=\cos x$ and differentiation of $h\left( x \right)=2x$ is \[{{h}^{'}}\left( x \right)=2\]. We apply the formula of \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\].
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{d\left[ 2x \right]}\left[ \dfrac{1}{2}\sin 2x \right]\times \dfrac{d\left[ 2x \right]}{dx}\]
We place the values of the differentiations and get
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\left( \dfrac{1}{2}\cos 2x \right)\left[ 2 \right]=\cos 2x\]
Therefore, the differentiation of $\dfrac{1}{2}\sin 2x$ is \[\cos 2x\].
Note: We can also assume the secondary function as a new variable. For the given function $\dfrac{1}{2}\sin 2x$, we assume $z=2x$. Then we use the chain rule in the form of
\[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ g\left( z \right) \right]=\dfrac{d}{dz}\left[ g\left( z \right) \right]\times \dfrac{dz}{dx}={{g}^{'}}\left( z \right)\times {{z}^{'}}\].
We replace the value $h\left( x \right)=z=2x$.
Complete step by step solution:
We differentiate the given function $f\left( x \right)=\dfrac{1}{2}\sin 2x$ with respect to $x$ using the chain rule.
Here we have a composite function where the main function is $g\left( x \right)=\sin x$ and the other function is $h\left( x \right)=2x$.
We have $goh\left( x \right)=g\left( 2x \right)=\sin 2x$. We take this as ours $f\left( x \right)=\dfrac{1}{2}\sin 2x$.
We need to find the value of $\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ \dfrac{1}{2}\sin 2x \right]$. We know $f\left( x \right)=\dfrac{1}{2}goh\left( x \right)$.
Differentiating $f\left( x \right)=\dfrac{1}{2}goh\left( x \right)$, we get
\[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ goh\left( x \right) \right]=\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}={{g}^{'}}\left[ h\left( x \right) \right]{{h}^{'}}\left( x \right)\].
The above-mentioned rule is the chain rule.
The chain rule allows us to differentiate with respect to the function $h\left( x \right)$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)$ with respect to $x$.
For the function $f\left( x \right)=\dfrac{1}{2}\sin 2x$, we take differentiation of $f\left( x \right)=\dfrac{1}{2}\sin 2x$ with respect to the function $h\left( x \right)=2x$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)=2x$ with respect to $x$.
The differentiation of $g\left( x \right)=\sin x$ is ${{g}^{'}}\left( x \right)=\cos x$ and differentiation of $h\left( x \right)=2x$ is \[{{h}^{'}}\left( x \right)=2\]. We apply the formula of \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\].
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{d\left[ 2x \right]}\left[ \dfrac{1}{2}\sin 2x \right]\times \dfrac{d\left[ 2x \right]}{dx}\]
We place the values of the differentiations and get
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\left( \dfrac{1}{2}\cos 2x \right)\left[ 2 \right]=\cos 2x\]
Therefore, the differentiation of $\dfrac{1}{2}\sin 2x$ is \[\cos 2x\].
Note: We can also assume the secondary function as a new variable. For the given function $\dfrac{1}{2}\sin 2x$, we assume $z=2x$. Then we use the chain rule in the form of
\[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ g\left( z \right) \right]=\dfrac{d}{dz}\left[ g\left( z \right) \right]\times \dfrac{dz}{dx}={{g}^{'}}\left( z \right)\times {{z}^{'}}\].
We replace the value $h\left( x \right)=z=2x$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

