
Find the derivative of $ {{\cos }^{2}}x $ by using the first principle of derivatives.
Answer
514.9k+ views
Hint: The first principle of derivatives: Given a function $ y=f\left( x \right) $ , its first derivative, the rate of change of y with respect to the change in x, is defined by: $ \dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x+h \right)-f\left( x \right)}{\left( x+h \right)-\left( x \right)} \right] $ .
Finding the derivative of a function by computing this limit is known as differentiation from first principles.
Use the identity $ \sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B={{\cos }^{2}}B-{{\cos }^{2}}A $ .
We know that $ \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 $ .
Complete step by step answer:
Let's say that the given function is $ y=f(x)={{\cos }^{2}}x $ .
For a change from $ x $ to $ x+h $ , the value of y changes from $ f(x) $ to $ f(x+h) $ .
The rate of change of y with respect to the change in x, will be given by:
$ \dfrac{\text{Change in the value of y}}{\text{Change in the value of x}}=\dfrac{f(x+h)-f(x)}{(x+h)-(x)} $
This rate for very small values of the change in x, is called the derivative of the function and is represented by $ \dfrac{dy}{dx} $ .
∴ $ \dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x+h \right)-f\left( x \right)}{\left( x+h \right)-\left( x \right)} \right] $
⇒ $ \dfrac{d}{dx}\left( {{\cos }^{2}}x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{{{\cos }^{2}}\left( x+h \right)-{{\cos }^{2}}\left( x \right)}{\left( x+h \right)-\left( x \right)} \right] $
Using the identity $ {{\cos }^{2}}B-{{\cos }^{2}}A=\sin (A+B)\sin (A-B) $ , we get:
= $ \underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ \left( x+h \right)+\left( x \right) \right]\sin \left[ \left( x+h \right)-\left( x \right) \right]}{h} \right] $
= $ \underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( 2x+h \right)\sin \left( h \right)}{h} \right] $
Which can be written as:
= $ \underset{h\to 0}{\mathop{\lim }}\,\sin \left( 2x+h \right)\times \underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( h \right)}{h} $
Applying the limit and using $ \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 $ , we get:
= $ \sin \left( 2x+0 \right)\times 1 $
= $ \sin 2x $
Therefore, the derivative of $ {{\cos }^{2}}x $ is $ \sin 2x $ .
Note: Differentiability of a Function: A function $ f(x) $ is differentiable at $ x=a $ in its domain, if its derivative is continuous at $ a $ .
This means that $ {f}'(a) $ must exist, or equivalently: $ \underset{x\to {{a}^{+}}}{\mathop{\lim }}\,{f}'(x)=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,{f}'(x)=\underset{x\to a}{\mathop{\lim }}\,{f}'(x)={f}'(a) $ .
A continuous function is always differentiable but a differentiable function needs not be continuous.
Indeterminate Forms: Any expression whose value cannot be defined, like $ \dfrac{0}{0},\pm \dfrac{\infty }{\infty },{{0}^{0}},{{\infty }^{0}} $ etc.
L'Hospital's Rule: For the differentiable functions f(x) and g(x), the $ \underset{x\to c}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)} $ , if $ f(x) $ and $ g(x) $ are both 0 or $ \pm \infty $ (i.e. an Indeterminate Form) is equal to the $ \underset{x\to c}{\mathop{\lim }}\,\dfrac{{f}'(x)}{{g}'(x)} $ , if it exists.
Finding the derivative of a function by computing this limit is known as differentiation from first principles.
Use the identity $ \sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B={{\cos }^{2}}B-{{\cos }^{2}}A $ .
We know that $ \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 $ .
Complete step by step answer:
Let's say that the given function is $ y=f(x)={{\cos }^{2}}x $ .
For a change from $ x $ to $ x+h $ , the value of y changes from $ f(x) $ to $ f(x+h) $ .
The rate of change of y with respect to the change in x, will be given by:
$ \dfrac{\text{Change in the value of y}}{\text{Change in the value of x}}=\dfrac{f(x+h)-f(x)}{(x+h)-(x)} $
This rate for very small values of the change in x, is called the derivative of the function and is represented by $ \dfrac{dy}{dx} $ .
∴ $ \dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x+h \right)-f\left( x \right)}{\left( x+h \right)-\left( x \right)} \right] $
⇒ $ \dfrac{d}{dx}\left( {{\cos }^{2}}x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{{{\cos }^{2}}\left( x+h \right)-{{\cos }^{2}}\left( x \right)}{\left( x+h \right)-\left( x \right)} \right] $
Using the identity $ {{\cos }^{2}}B-{{\cos }^{2}}A=\sin (A+B)\sin (A-B) $ , we get:
= $ \underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ \left( x+h \right)+\left( x \right) \right]\sin \left[ \left( x+h \right)-\left( x \right) \right]}{h} \right] $
= $ \underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( 2x+h \right)\sin \left( h \right)}{h} \right] $
Which can be written as:
= $ \underset{h\to 0}{\mathop{\lim }}\,\sin \left( 2x+h \right)\times \underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( h \right)}{h} $
Applying the limit and using $ \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 $ , we get:
= $ \sin \left( 2x+0 \right)\times 1 $
= $ \sin 2x $
Therefore, the derivative of $ {{\cos }^{2}}x $ is $ \sin 2x $ .
Note: Differentiability of a Function: A function $ f(x) $ is differentiable at $ x=a $ in its domain, if its derivative is continuous at $ a $ .
This means that $ {f}'(a) $ must exist, or equivalently: $ \underset{x\to {{a}^{+}}}{\mathop{\lim }}\,{f}'(x)=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,{f}'(x)=\underset{x\to a}{\mathop{\lim }}\,{f}'(x)={f}'(a) $ .
A continuous function is always differentiable but a differentiable function needs not be continuous.
Indeterminate Forms: Any expression whose value cannot be defined, like $ \dfrac{0}{0},\pm \dfrac{\infty }{\infty },{{0}^{0}},{{\infty }^{0}} $ etc.
L'Hospital's Rule: For the differentiable functions f(x) and g(x), the $ \underset{x\to c}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)} $ , if $ f(x) $ and $ g(x) $ are both 0 or $ \pm \infty $ (i.e. an Indeterminate Form) is equal to the $ \underset{x\to c}{\mathop{\lim }}\,\dfrac{{f}'(x)}{{g}'(x)} $ , if it exists.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

