
How do I find the constant term of a binomial expansion?
Answer
529.5k+ views
Hint: In the above question, you were asked to find the constant term of binomial expression. According to the formula of the binomial theorem that is ${{(x+y)}^{n}}$ , the term ${{y}^{n}}$ is always constant. You will see how this is a constant term. So, let us see how we can solve this problem.
Complete step by step solution:
We will see what do we get from the expansion of the binomial formula which is ${{(x+y)}^{n}}$
$\Rightarrow {{(x+y)}^{n}}=(\begin{matrix}
n \\
0 \\
\end{matrix}).{{x}^{n}}+(\begin{matrix}
n \\
1 \\
\end{matrix}).{{x}^{n-1}}.{{y}^{1}}....+(\begin{matrix}
n \\
k \\
\end{matrix}).{{x}^{n-k}}.{{y}^{k}}+....+(\begin{matrix}
n \\
n \\
\end{matrix}).{{y}^{n}}=\sum\limits_{k=0}^{n}{.(\begin{matrix}
n \\
k \\
\end{matrix}).{{x}^{n-k}}.{{y}^{k}}}$
where $x,y\in \mathbb{R},$ $k,n\in \mathbb{N}$ and $(\begin{matrix}
n \\
k \\
\end{matrix})$ denotes combinations of n things taken k at a time. So we have 2 cases
1st case: When the terms of the binomial are a constant and a variable like
$\Rightarrow {{(x+c)}^{n}}=(\begin{matrix}
n \\
0 \\
\end{matrix})\cdot {{x}^{n}}+(\begin{matrix}
n \\
1 \\
\end{matrix})\cdot {{x}^{n-1}}\cdot {{c}^{1}}+...+(\begin{matrix}
n \\
k \\
\end{matrix})\cdot {{x}^{n-k}}\cdot {{c}^{k}}+...+(\begin{matrix}
n \\
n \\
\end{matrix})\cdot {{c}^{n}}$
Here the constant term is $(\begin{matrix}
n \\
n \\
\end{matrix})\cdot {{c}^{n}}$ and its product is also constant.
2nd Case: When the terms of the binomial are a variable and the ratio of that variable like
$\Rightarrow (\begin{matrix}
n \\
k \\
\end{matrix})\cdot {{x}^{n-k}}.{{(\dfrac{c}{x})}^{k}}=(\begin{matrix}
n \\
k \\
\end{matrix})\cdot {{x}^{n-k}}\cdot {{c}^{k}}.\dfrac{1}{{{x}^{k}}}=((\begin{matrix}
n \\
n \\
\end{matrix})\cdot {{c}^{k}}).\dfrac{{{x}^{n-k}}}{{{x}^{k}}}=((\begin{matrix}
n \\
k \\
\end{matrix})\cdot {{c}^{k}}).{{x}^{n-2k}}$
Therefore, the middle term is constant in this case that is $k=\dfrac{n}{2}$.
So, the constant term in a binomial expression which is ${{(x+y)}^{n}}$ is ${{y}^{n}}$.
Note:
For the above solution, there was one more case but it has no constant term. The binomial expression for the third case is ${{(x+y)}^{n}}$. We will study the details of the binomial theorem in the coming lessons.
Complete step by step solution:
We will see what do we get from the expansion of the binomial formula which is ${{(x+y)}^{n}}$
$\Rightarrow {{(x+y)}^{n}}=(\begin{matrix}
n \\
0 \\
\end{matrix}).{{x}^{n}}+(\begin{matrix}
n \\
1 \\
\end{matrix}).{{x}^{n-1}}.{{y}^{1}}....+(\begin{matrix}
n \\
k \\
\end{matrix}).{{x}^{n-k}}.{{y}^{k}}+....+(\begin{matrix}
n \\
n \\
\end{matrix}).{{y}^{n}}=\sum\limits_{k=0}^{n}{.(\begin{matrix}
n \\
k \\
\end{matrix}).{{x}^{n-k}}.{{y}^{k}}}$
where $x,y\in \mathbb{R},$ $k,n\in \mathbb{N}$ and $(\begin{matrix}
n \\
k \\
\end{matrix})$ denotes combinations of n things taken k at a time. So we have 2 cases
1st case: When the terms of the binomial are a constant and a variable like
$\Rightarrow {{(x+c)}^{n}}=(\begin{matrix}
n \\
0 \\
\end{matrix})\cdot {{x}^{n}}+(\begin{matrix}
n \\
1 \\
\end{matrix})\cdot {{x}^{n-1}}\cdot {{c}^{1}}+...+(\begin{matrix}
n \\
k \\
\end{matrix})\cdot {{x}^{n-k}}\cdot {{c}^{k}}+...+(\begin{matrix}
n \\
n \\
\end{matrix})\cdot {{c}^{n}}$
Here the constant term is $(\begin{matrix}
n \\
n \\
\end{matrix})\cdot {{c}^{n}}$ and its product is also constant.
2nd Case: When the terms of the binomial are a variable and the ratio of that variable like
$\Rightarrow (\begin{matrix}
n \\
k \\
\end{matrix})\cdot {{x}^{n-k}}.{{(\dfrac{c}{x})}^{k}}=(\begin{matrix}
n \\
k \\
\end{matrix})\cdot {{x}^{n-k}}\cdot {{c}^{k}}.\dfrac{1}{{{x}^{k}}}=((\begin{matrix}
n \\
n \\
\end{matrix})\cdot {{c}^{k}}).\dfrac{{{x}^{n-k}}}{{{x}^{k}}}=((\begin{matrix}
n \\
k \\
\end{matrix})\cdot {{c}^{k}}).{{x}^{n-2k}}$
Therefore, the middle term is constant in this case that is $k=\dfrac{n}{2}$.
So, the constant term in a binomial expression which is ${{(x+y)}^{n}}$ is ${{y}^{n}}$.
Note:
For the above solution, there was one more case but it has no constant term. The binomial expression for the third case is ${{(x+y)}^{n}}$. We will study the details of the binomial theorem in the coming lessons.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

How is democracy better than other forms of government class 12 social science CBSE

What is virtual and erect image ?

Explain the energy losses in the transformer How are class 12 physics CBSE

