
Find the coefficient of ${{x}^{4}}$ in the expansion of ${{\left( 1+2x \right)}^{4}}{{\left( 2-x \right)}^{5}}$
Answer
574.8k+ views
Hint: We start solving this question by first dividing the given expression ${{\left( 1+2x \right)}^{4}}{{\left( 2-x \right)}^{5}}$ into two parts ${{\left( 1+2x \right)}^{4}}$ and ${{\left( 2-x \right)}^{5}}$. Then we use the formula for the binomial expansion ${{\left( a+x \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}x+{}^{n}{{C}_{2}}{{a}^{n-2}}{{x}^{2}}+.........+{}^{n}{{C}_{n-1}}a{{x}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n}}$ to find the expansion of the two parts. Then we find the coefficients obtained by multiplying the terms of first part and second part that gives ${{x}^{4}}$ and add them to find the coefficient of ${{x}^{4}}$.
Complete step-by-step answer:
First, let us go through the formula for the binomial expansion of a first-degree polynomial
${{\left( a+x \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}x+{}^{n}{{C}_{2}}{{a}^{n-2}}{{x}^{2}}+.........+{}^{n}{{C}_{n-1}}a{{x}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n}}$
Now let us divide the given polynomial into two parts ${{\left( 1+2x \right)}^{4}}$ and ${{\left( 2-x \right)}^{5}}$.
Now let us go through the first part ${{\left( 1+2x \right)}^{4}}$. By using the above discussed formula expansion and applying it we get,
${{\left( 1+2x \right)}^{4}}={}^{4}{{C}_{0}}+{}^{4}{{C}_{1}}\left( 2x \right)+{}^{4}{{C}_{2}}{{\left( 2x \right)}^{2}}+{}^{4}{{C}_{3}}{{\left( 2x \right)}^{3}}+{}^{4}{{C}_{4}}{{\left( 2x \right)}^{4}}$
Now let us consider the formula ${}^{n}{{C}_{r}}$
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$
Using that we get
$\begin{align}
& \Rightarrow {}^{4}{{C}_{0}}=\dfrac{4!}{0!\times 4!}=1 \\
& \Rightarrow {}^{4}{{C}_{1}}=\dfrac{4!}{1!\times 3!}=4 \\
& \Rightarrow {}^{4}{{C}_{2}}=\dfrac{4!}{2!\times 2!}=6 \\
& \Rightarrow {}^{4}{{C}_{3}}=\dfrac{4!}{3!\times 1!}=4 \\
& \Rightarrow {}^{4}{{C}_{4}}=\dfrac{4!}{4!\times 0!}=1 \\
\end{align}$
Substituting the values in the above expansion, we get
$\begin{align}
& \Rightarrow {{\left( 1+2x \right)}^{4}}=1+4\left( 2x \right)+6\left( 4{{x}^{2}} \right)+4\left( 8{{x}^{3}} \right)+1\left( 16{{x}^{4}} \right) \\
& \Rightarrow {{\left( 1+2x \right)}^{4}}=1+8x+24{{x}^{2}}+32{{x}^{3}}+16{{x}^{4}} \\
\end{align}$
Now let us consider the second part ${{\left( 2-x \right)}^{5}}$. By applying the binomial expansion for it we get,
${{\left( 2-x \right)}^{5}}={}^{5}{{C}_{0}}{{\left( 2 \right)}^{5}}+{}^{5}{{C}_{1}}{{\left( 2 \right)}^{4}}\left( -x \right)+{}^{5}{{C}_{2}}{{\left( 2 \right)}^{3}}{{\left( -x \right)}^{2}}+{}^{5}{{C}_{3}}{{\left( 2 \right)}^{2}}{{\left( -x \right)}^{3}}+{}^{5}{{C}_{4}}\left( 2 \right){{\left( -x \right)}^{4}}+{}^{5}{{C}_{5}}{{\left( -x \right)}^{5}}$
Now let us consider the formula ${}^{n}{{C}_{r}}$
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$
Using that we get
$\begin{align}
& \Rightarrow {}^{5}{{C}_{0}}=\dfrac{5!}{0!\times 5!}=1 \\
& \Rightarrow {}^{5}{{C}_{1}}=\dfrac{5!}{1!\times 4!}=5 \\
& \Rightarrow {}^{5}{{C}_{2}}=\dfrac{5!}{2!\times 3!}=10 \\
& \Rightarrow {}^{5}{{C}_{3}}=\dfrac{5!}{3!\times 2!}=10 \\
& \Rightarrow {}^{5}{{C}_{4}}=\dfrac{5!}{4!\times 1!}=5 \\
& \Rightarrow {}^{5}{{C}_{5}}=\dfrac{5!}{5!\times 0!}=1 \\
\end{align}$
Substituting the values in the above expansion, we get
$\begin{align}
& \Rightarrow {{\left( 2-x \right)}^{5}}={}^{5}{{C}_{0}}{{\left( 2 \right)}^{5}}+{}^{5}{{C}_{1}}{{\left( 2 \right)}^{4}}\left( -x \right)+{}^{5}{{C}_{2}}{{\left( 2 \right)}^{3}}{{\left( -x \right)}^{2}}+{}^{5}{{C}_{3}}{{\left( 2 \right)}^{2}}{{\left( -x \right)}^{3}}+{}^{5}{{C}_{4}}\left( 2 \right){{\left( -x \right)}^{4}}+{}^{5}{{C}_{5}}{{\left( -x \right)}^{5}} \\
& \Rightarrow {{\left( 2-x \right)}^{5}}=32+5\left( 16 \right)\left( -x \right)+10\left( 8 \right){{x}^{2}}+10\left( 4 \right)\left( -{{x}^{3}} \right)+5\left( 2 \right){{x}^{4}}+{}^{5}{{C}_{5}}\left( -{{x}^{5}} \right) \\
& \Rightarrow {{\left( 2-x \right)}^{5}}=32-80x+80{{x}^{2}}-40{{x}^{3}}+10{{x}^{4}}-{{x}^{5}} \\
\end{align}$
As we need to find the coefficient of ${{x}^{4}}$ in the expansion.
We can get ${{x}^{4}}$ by multiplying the coefficients of
${{x}^{0}}$ of first part with ${{x}^{4}}$ of second part we get $1\left( 10{{x}^{4}} \right)$
${{x}^{1}}$ of first part with ${{x}^{3}}$ of second part we get $8x\left( -40{{x}^{3}} \right)$
${{x}^{2}}$ of first part with ${{x}^{2}}$ of second part we get $24{{x}^{2}}\left( 80{{x}^{2}} \right)$
${{x}^{3}}$ of first part with ${{x}^{1}}$ of second part we get $32{{x}^{3}}\left( -80x \right)$
${{x}^{4}}$ of first part with ${{x}^{0}}$ of second part we get $16{{x}^{4}}\left( 32 \right)$
We need to find the coefficient of ${{x}^{4}}$. So, by adding all the terms we get,
$\begin{align}
& \Rightarrow 1\left( 10{{x}^{4}} \right)+8x\left( -40{{x}^{3}} \right)+24{{x}^{2}}\left( 80{{x}^{2}} \right)+32{{x}^{3}}\left( -80x \right)+16{{x}^{4}}\left( 32 \right) \\
& \Rightarrow 10{{x}^{4}}-320{{x}^{4}}+1920{{x}^{4}}-2560{{x}^{4}}+512{{x}^{4}} \\
& \Rightarrow -438{{x}^{4}} \\
\end{align}$
So, we get that the coefficient of ${{x}^{4}}$ in the expansion of ${{\left( 1+2x \right)}^{4}}{{\left( 2-x \right)}^{5}}$ is -438.
Hence, the answer is -438.
Note: The common mistake that one does while solving this problem is one might multiply the coefficient of ${{x}^{4}}$ in the first part with the coefficient of ${{x}^{0}}$ in second part and multiply the coefficient of ${{x}^{0}}$ in the first part with the coefficient of ${{x}^{4}}$ in second part. Then we get
$\begin{align}
& \Rightarrow 1\left( 10{{x}^{4}} \right)+16{{x}^{4}}\left( 32 \right) \\
& \Rightarrow 10{{x}^{4}}+512{{x}^{4}} \\
& \Rightarrow 522{{x}^{4}} \\
\end{align}$
Then we get the coefficient of ${{x}^{4}}$ as 522. But we need to consider all the possible choices of getting ${{x}^{4}}$ in the expansion.
Complete step-by-step answer:
First, let us go through the formula for the binomial expansion of a first-degree polynomial
${{\left( a+x \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}x+{}^{n}{{C}_{2}}{{a}^{n-2}}{{x}^{2}}+.........+{}^{n}{{C}_{n-1}}a{{x}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n}}$
Now let us divide the given polynomial into two parts ${{\left( 1+2x \right)}^{4}}$ and ${{\left( 2-x \right)}^{5}}$.
Now let us go through the first part ${{\left( 1+2x \right)}^{4}}$. By using the above discussed formula expansion and applying it we get,
${{\left( 1+2x \right)}^{4}}={}^{4}{{C}_{0}}+{}^{4}{{C}_{1}}\left( 2x \right)+{}^{4}{{C}_{2}}{{\left( 2x \right)}^{2}}+{}^{4}{{C}_{3}}{{\left( 2x \right)}^{3}}+{}^{4}{{C}_{4}}{{\left( 2x \right)}^{4}}$
Now let us consider the formula ${}^{n}{{C}_{r}}$
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$
Using that we get
$\begin{align}
& \Rightarrow {}^{4}{{C}_{0}}=\dfrac{4!}{0!\times 4!}=1 \\
& \Rightarrow {}^{4}{{C}_{1}}=\dfrac{4!}{1!\times 3!}=4 \\
& \Rightarrow {}^{4}{{C}_{2}}=\dfrac{4!}{2!\times 2!}=6 \\
& \Rightarrow {}^{4}{{C}_{3}}=\dfrac{4!}{3!\times 1!}=4 \\
& \Rightarrow {}^{4}{{C}_{4}}=\dfrac{4!}{4!\times 0!}=1 \\
\end{align}$
Substituting the values in the above expansion, we get
$\begin{align}
& \Rightarrow {{\left( 1+2x \right)}^{4}}=1+4\left( 2x \right)+6\left( 4{{x}^{2}} \right)+4\left( 8{{x}^{3}} \right)+1\left( 16{{x}^{4}} \right) \\
& \Rightarrow {{\left( 1+2x \right)}^{4}}=1+8x+24{{x}^{2}}+32{{x}^{3}}+16{{x}^{4}} \\
\end{align}$
Now let us consider the second part ${{\left( 2-x \right)}^{5}}$. By applying the binomial expansion for it we get,
${{\left( 2-x \right)}^{5}}={}^{5}{{C}_{0}}{{\left( 2 \right)}^{5}}+{}^{5}{{C}_{1}}{{\left( 2 \right)}^{4}}\left( -x \right)+{}^{5}{{C}_{2}}{{\left( 2 \right)}^{3}}{{\left( -x \right)}^{2}}+{}^{5}{{C}_{3}}{{\left( 2 \right)}^{2}}{{\left( -x \right)}^{3}}+{}^{5}{{C}_{4}}\left( 2 \right){{\left( -x \right)}^{4}}+{}^{5}{{C}_{5}}{{\left( -x \right)}^{5}}$
Now let us consider the formula ${}^{n}{{C}_{r}}$
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$
Using that we get
$\begin{align}
& \Rightarrow {}^{5}{{C}_{0}}=\dfrac{5!}{0!\times 5!}=1 \\
& \Rightarrow {}^{5}{{C}_{1}}=\dfrac{5!}{1!\times 4!}=5 \\
& \Rightarrow {}^{5}{{C}_{2}}=\dfrac{5!}{2!\times 3!}=10 \\
& \Rightarrow {}^{5}{{C}_{3}}=\dfrac{5!}{3!\times 2!}=10 \\
& \Rightarrow {}^{5}{{C}_{4}}=\dfrac{5!}{4!\times 1!}=5 \\
& \Rightarrow {}^{5}{{C}_{5}}=\dfrac{5!}{5!\times 0!}=1 \\
\end{align}$
Substituting the values in the above expansion, we get
$\begin{align}
& \Rightarrow {{\left( 2-x \right)}^{5}}={}^{5}{{C}_{0}}{{\left( 2 \right)}^{5}}+{}^{5}{{C}_{1}}{{\left( 2 \right)}^{4}}\left( -x \right)+{}^{5}{{C}_{2}}{{\left( 2 \right)}^{3}}{{\left( -x \right)}^{2}}+{}^{5}{{C}_{3}}{{\left( 2 \right)}^{2}}{{\left( -x \right)}^{3}}+{}^{5}{{C}_{4}}\left( 2 \right){{\left( -x \right)}^{4}}+{}^{5}{{C}_{5}}{{\left( -x \right)}^{5}} \\
& \Rightarrow {{\left( 2-x \right)}^{5}}=32+5\left( 16 \right)\left( -x \right)+10\left( 8 \right){{x}^{2}}+10\left( 4 \right)\left( -{{x}^{3}} \right)+5\left( 2 \right){{x}^{4}}+{}^{5}{{C}_{5}}\left( -{{x}^{5}} \right) \\
& \Rightarrow {{\left( 2-x \right)}^{5}}=32-80x+80{{x}^{2}}-40{{x}^{3}}+10{{x}^{4}}-{{x}^{5}} \\
\end{align}$
As we need to find the coefficient of ${{x}^{4}}$ in the expansion.
We can get ${{x}^{4}}$ by multiplying the coefficients of
${{x}^{0}}$ of first part with ${{x}^{4}}$ of second part we get $1\left( 10{{x}^{4}} \right)$
${{x}^{1}}$ of first part with ${{x}^{3}}$ of second part we get $8x\left( -40{{x}^{3}} \right)$
${{x}^{2}}$ of first part with ${{x}^{2}}$ of second part we get $24{{x}^{2}}\left( 80{{x}^{2}} \right)$
${{x}^{3}}$ of first part with ${{x}^{1}}$ of second part we get $32{{x}^{3}}\left( -80x \right)$
${{x}^{4}}$ of first part with ${{x}^{0}}$ of second part we get $16{{x}^{4}}\left( 32 \right)$
We need to find the coefficient of ${{x}^{4}}$. So, by adding all the terms we get,
$\begin{align}
& \Rightarrow 1\left( 10{{x}^{4}} \right)+8x\left( -40{{x}^{3}} \right)+24{{x}^{2}}\left( 80{{x}^{2}} \right)+32{{x}^{3}}\left( -80x \right)+16{{x}^{4}}\left( 32 \right) \\
& \Rightarrow 10{{x}^{4}}-320{{x}^{4}}+1920{{x}^{4}}-2560{{x}^{4}}+512{{x}^{4}} \\
& \Rightarrow -438{{x}^{4}} \\
\end{align}$
So, we get that the coefficient of ${{x}^{4}}$ in the expansion of ${{\left( 1+2x \right)}^{4}}{{\left( 2-x \right)}^{5}}$ is -438.
Hence, the answer is -438.
Note: The common mistake that one does while solving this problem is one might multiply the coefficient of ${{x}^{4}}$ in the first part with the coefficient of ${{x}^{0}}$ in second part and multiply the coefficient of ${{x}^{0}}$ in the first part with the coefficient of ${{x}^{4}}$ in second part. Then we get
$\begin{align}
& \Rightarrow 1\left( 10{{x}^{4}} \right)+16{{x}^{4}}\left( 32 \right) \\
& \Rightarrow 10{{x}^{4}}+512{{x}^{4}} \\
& \Rightarrow 522{{x}^{4}} \\
\end{align}$
Then we get the coefficient of ${{x}^{4}}$ as 522. But we need to consider all the possible choices of getting ${{x}^{4}}$ in the expansion.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

