
Find the coefficient of ${{x}^{4}}$ in the expansion of ${{\left( 1+2x \right)}^{4}}{{\left( 2-x \right)}^{5}}$
Answer
510k+ views
Hint: We start solving this question by first dividing the given expression ${{\left( 1+2x \right)}^{4}}{{\left( 2-x \right)}^{5}}$ into two parts ${{\left( 1+2x \right)}^{4}}$ and ${{\left( 2-x \right)}^{5}}$. Then we use the formula for the binomial expansion ${{\left( a+x \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}x+{}^{n}{{C}_{2}}{{a}^{n-2}}{{x}^{2}}+.........+{}^{n}{{C}_{n-1}}a{{x}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n}}$ to find the expansion of the two parts. Then we find the coefficients obtained by multiplying the terms of first part and second part that gives ${{x}^{4}}$ and add them to find the coefficient of ${{x}^{4}}$.
Complete step-by-step answer:
First, let us go through the formula for the binomial expansion of a first-degree polynomial
${{\left( a+x \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}x+{}^{n}{{C}_{2}}{{a}^{n-2}}{{x}^{2}}+.........+{}^{n}{{C}_{n-1}}a{{x}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n}}$
Now let us divide the given polynomial into two parts ${{\left( 1+2x \right)}^{4}}$ and ${{\left( 2-x \right)}^{5}}$.
Now let us go through the first part ${{\left( 1+2x \right)}^{4}}$. By using the above discussed formula expansion and applying it we get,
${{\left( 1+2x \right)}^{4}}={}^{4}{{C}_{0}}+{}^{4}{{C}_{1}}\left( 2x \right)+{}^{4}{{C}_{2}}{{\left( 2x \right)}^{2}}+{}^{4}{{C}_{3}}{{\left( 2x \right)}^{3}}+{}^{4}{{C}_{4}}{{\left( 2x \right)}^{4}}$
Now let us consider the formula ${}^{n}{{C}_{r}}$
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$
Using that we get
$\begin{align}
& \Rightarrow {}^{4}{{C}_{0}}=\dfrac{4!}{0!\times 4!}=1 \\
& \Rightarrow {}^{4}{{C}_{1}}=\dfrac{4!}{1!\times 3!}=4 \\
& \Rightarrow {}^{4}{{C}_{2}}=\dfrac{4!}{2!\times 2!}=6 \\
& \Rightarrow {}^{4}{{C}_{3}}=\dfrac{4!}{3!\times 1!}=4 \\
& \Rightarrow {}^{4}{{C}_{4}}=\dfrac{4!}{4!\times 0!}=1 \\
\end{align}$
Substituting the values in the above expansion, we get
$\begin{align}
& \Rightarrow {{\left( 1+2x \right)}^{4}}=1+4\left( 2x \right)+6\left( 4{{x}^{2}} \right)+4\left( 8{{x}^{3}} \right)+1\left( 16{{x}^{4}} \right) \\
& \Rightarrow {{\left( 1+2x \right)}^{4}}=1+8x+24{{x}^{2}}+32{{x}^{3}}+16{{x}^{4}} \\
\end{align}$
Now let us consider the second part ${{\left( 2-x \right)}^{5}}$. By applying the binomial expansion for it we get,
${{\left( 2-x \right)}^{5}}={}^{5}{{C}_{0}}{{\left( 2 \right)}^{5}}+{}^{5}{{C}_{1}}{{\left( 2 \right)}^{4}}\left( -x \right)+{}^{5}{{C}_{2}}{{\left( 2 \right)}^{3}}{{\left( -x \right)}^{2}}+{}^{5}{{C}_{3}}{{\left( 2 \right)}^{2}}{{\left( -x \right)}^{3}}+{}^{5}{{C}_{4}}\left( 2 \right){{\left( -x \right)}^{4}}+{}^{5}{{C}_{5}}{{\left( -x \right)}^{5}}$
Now let us consider the formula ${}^{n}{{C}_{r}}$
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$
Using that we get
$\begin{align}
& \Rightarrow {}^{5}{{C}_{0}}=\dfrac{5!}{0!\times 5!}=1 \\
& \Rightarrow {}^{5}{{C}_{1}}=\dfrac{5!}{1!\times 4!}=5 \\
& \Rightarrow {}^{5}{{C}_{2}}=\dfrac{5!}{2!\times 3!}=10 \\
& \Rightarrow {}^{5}{{C}_{3}}=\dfrac{5!}{3!\times 2!}=10 \\
& \Rightarrow {}^{5}{{C}_{4}}=\dfrac{5!}{4!\times 1!}=5 \\
& \Rightarrow {}^{5}{{C}_{5}}=\dfrac{5!}{5!\times 0!}=1 \\
\end{align}$
Substituting the values in the above expansion, we get
$\begin{align}
& \Rightarrow {{\left( 2-x \right)}^{5}}={}^{5}{{C}_{0}}{{\left( 2 \right)}^{5}}+{}^{5}{{C}_{1}}{{\left( 2 \right)}^{4}}\left( -x \right)+{}^{5}{{C}_{2}}{{\left( 2 \right)}^{3}}{{\left( -x \right)}^{2}}+{}^{5}{{C}_{3}}{{\left( 2 \right)}^{2}}{{\left( -x \right)}^{3}}+{}^{5}{{C}_{4}}\left( 2 \right){{\left( -x \right)}^{4}}+{}^{5}{{C}_{5}}{{\left( -x \right)}^{5}} \\
& \Rightarrow {{\left( 2-x \right)}^{5}}=32+5\left( 16 \right)\left( -x \right)+10\left( 8 \right){{x}^{2}}+10\left( 4 \right)\left( -{{x}^{3}} \right)+5\left( 2 \right){{x}^{4}}+{}^{5}{{C}_{5}}\left( -{{x}^{5}} \right) \\
& \Rightarrow {{\left( 2-x \right)}^{5}}=32-80x+80{{x}^{2}}-40{{x}^{3}}+10{{x}^{4}}-{{x}^{5}} \\
\end{align}$
As we need to find the coefficient of ${{x}^{4}}$ in the expansion.
We can get ${{x}^{4}}$ by multiplying the coefficients of
${{x}^{0}}$ of first part with ${{x}^{4}}$ of second part we get $1\left( 10{{x}^{4}} \right)$
${{x}^{1}}$ of first part with ${{x}^{3}}$ of second part we get $8x\left( -40{{x}^{3}} \right)$
${{x}^{2}}$ of first part with ${{x}^{2}}$ of second part we get $24{{x}^{2}}\left( 80{{x}^{2}} \right)$
${{x}^{3}}$ of first part with ${{x}^{1}}$ of second part we get $32{{x}^{3}}\left( -80x \right)$
${{x}^{4}}$ of first part with ${{x}^{0}}$ of second part we get $16{{x}^{4}}\left( 32 \right)$
We need to find the coefficient of ${{x}^{4}}$. So, by adding all the terms we get,
$\begin{align}
& \Rightarrow 1\left( 10{{x}^{4}} \right)+8x\left( -40{{x}^{3}} \right)+24{{x}^{2}}\left( 80{{x}^{2}} \right)+32{{x}^{3}}\left( -80x \right)+16{{x}^{4}}\left( 32 \right) \\
& \Rightarrow 10{{x}^{4}}-320{{x}^{4}}+1920{{x}^{4}}-2560{{x}^{4}}+512{{x}^{4}} \\
& \Rightarrow -438{{x}^{4}} \\
\end{align}$
So, we get that the coefficient of ${{x}^{4}}$ in the expansion of ${{\left( 1+2x \right)}^{4}}{{\left( 2-x \right)}^{5}}$ is -438.
Hence, the answer is -438.
Note: The common mistake that one does while solving this problem is one might multiply the coefficient of ${{x}^{4}}$ in the first part with the coefficient of ${{x}^{0}}$ in second part and multiply the coefficient of ${{x}^{0}}$ in the first part with the coefficient of ${{x}^{4}}$ in second part. Then we get
$\begin{align}
& \Rightarrow 1\left( 10{{x}^{4}} \right)+16{{x}^{4}}\left( 32 \right) \\
& \Rightarrow 10{{x}^{4}}+512{{x}^{4}} \\
& \Rightarrow 522{{x}^{4}} \\
\end{align}$
Then we get the coefficient of ${{x}^{4}}$ as 522. But we need to consider all the possible choices of getting ${{x}^{4}}$ in the expansion.
Complete step-by-step answer:
First, let us go through the formula for the binomial expansion of a first-degree polynomial
${{\left( a+x \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}x+{}^{n}{{C}_{2}}{{a}^{n-2}}{{x}^{2}}+.........+{}^{n}{{C}_{n-1}}a{{x}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n}}$
Now let us divide the given polynomial into two parts ${{\left( 1+2x \right)}^{4}}$ and ${{\left( 2-x \right)}^{5}}$.
Now let us go through the first part ${{\left( 1+2x \right)}^{4}}$. By using the above discussed formula expansion and applying it we get,
${{\left( 1+2x \right)}^{4}}={}^{4}{{C}_{0}}+{}^{4}{{C}_{1}}\left( 2x \right)+{}^{4}{{C}_{2}}{{\left( 2x \right)}^{2}}+{}^{4}{{C}_{3}}{{\left( 2x \right)}^{3}}+{}^{4}{{C}_{4}}{{\left( 2x \right)}^{4}}$
Now let us consider the formula ${}^{n}{{C}_{r}}$
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$
Using that we get
$\begin{align}
& \Rightarrow {}^{4}{{C}_{0}}=\dfrac{4!}{0!\times 4!}=1 \\
& \Rightarrow {}^{4}{{C}_{1}}=\dfrac{4!}{1!\times 3!}=4 \\
& \Rightarrow {}^{4}{{C}_{2}}=\dfrac{4!}{2!\times 2!}=6 \\
& \Rightarrow {}^{4}{{C}_{3}}=\dfrac{4!}{3!\times 1!}=4 \\
& \Rightarrow {}^{4}{{C}_{4}}=\dfrac{4!}{4!\times 0!}=1 \\
\end{align}$
Substituting the values in the above expansion, we get
$\begin{align}
& \Rightarrow {{\left( 1+2x \right)}^{4}}=1+4\left( 2x \right)+6\left( 4{{x}^{2}} \right)+4\left( 8{{x}^{3}} \right)+1\left( 16{{x}^{4}} \right) \\
& \Rightarrow {{\left( 1+2x \right)}^{4}}=1+8x+24{{x}^{2}}+32{{x}^{3}}+16{{x}^{4}} \\
\end{align}$
Now let us consider the second part ${{\left( 2-x \right)}^{5}}$. By applying the binomial expansion for it we get,
${{\left( 2-x \right)}^{5}}={}^{5}{{C}_{0}}{{\left( 2 \right)}^{5}}+{}^{5}{{C}_{1}}{{\left( 2 \right)}^{4}}\left( -x \right)+{}^{5}{{C}_{2}}{{\left( 2 \right)}^{3}}{{\left( -x \right)}^{2}}+{}^{5}{{C}_{3}}{{\left( 2 \right)}^{2}}{{\left( -x \right)}^{3}}+{}^{5}{{C}_{4}}\left( 2 \right){{\left( -x \right)}^{4}}+{}^{5}{{C}_{5}}{{\left( -x \right)}^{5}}$
Now let us consider the formula ${}^{n}{{C}_{r}}$
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$
Using that we get
$\begin{align}
& \Rightarrow {}^{5}{{C}_{0}}=\dfrac{5!}{0!\times 5!}=1 \\
& \Rightarrow {}^{5}{{C}_{1}}=\dfrac{5!}{1!\times 4!}=5 \\
& \Rightarrow {}^{5}{{C}_{2}}=\dfrac{5!}{2!\times 3!}=10 \\
& \Rightarrow {}^{5}{{C}_{3}}=\dfrac{5!}{3!\times 2!}=10 \\
& \Rightarrow {}^{5}{{C}_{4}}=\dfrac{5!}{4!\times 1!}=5 \\
& \Rightarrow {}^{5}{{C}_{5}}=\dfrac{5!}{5!\times 0!}=1 \\
\end{align}$
Substituting the values in the above expansion, we get
$\begin{align}
& \Rightarrow {{\left( 2-x \right)}^{5}}={}^{5}{{C}_{0}}{{\left( 2 \right)}^{5}}+{}^{5}{{C}_{1}}{{\left( 2 \right)}^{4}}\left( -x \right)+{}^{5}{{C}_{2}}{{\left( 2 \right)}^{3}}{{\left( -x \right)}^{2}}+{}^{5}{{C}_{3}}{{\left( 2 \right)}^{2}}{{\left( -x \right)}^{3}}+{}^{5}{{C}_{4}}\left( 2 \right){{\left( -x \right)}^{4}}+{}^{5}{{C}_{5}}{{\left( -x \right)}^{5}} \\
& \Rightarrow {{\left( 2-x \right)}^{5}}=32+5\left( 16 \right)\left( -x \right)+10\left( 8 \right){{x}^{2}}+10\left( 4 \right)\left( -{{x}^{3}} \right)+5\left( 2 \right){{x}^{4}}+{}^{5}{{C}_{5}}\left( -{{x}^{5}} \right) \\
& \Rightarrow {{\left( 2-x \right)}^{5}}=32-80x+80{{x}^{2}}-40{{x}^{3}}+10{{x}^{4}}-{{x}^{5}} \\
\end{align}$
As we need to find the coefficient of ${{x}^{4}}$ in the expansion.
We can get ${{x}^{4}}$ by multiplying the coefficients of
${{x}^{0}}$ of first part with ${{x}^{4}}$ of second part we get $1\left( 10{{x}^{4}} \right)$
${{x}^{1}}$ of first part with ${{x}^{3}}$ of second part we get $8x\left( -40{{x}^{3}} \right)$
${{x}^{2}}$ of first part with ${{x}^{2}}$ of second part we get $24{{x}^{2}}\left( 80{{x}^{2}} \right)$
${{x}^{3}}$ of first part with ${{x}^{1}}$ of second part we get $32{{x}^{3}}\left( -80x \right)$
${{x}^{4}}$ of first part with ${{x}^{0}}$ of second part we get $16{{x}^{4}}\left( 32 \right)$
We need to find the coefficient of ${{x}^{4}}$. So, by adding all the terms we get,
$\begin{align}
& \Rightarrow 1\left( 10{{x}^{4}} \right)+8x\left( -40{{x}^{3}} \right)+24{{x}^{2}}\left( 80{{x}^{2}} \right)+32{{x}^{3}}\left( -80x \right)+16{{x}^{4}}\left( 32 \right) \\
& \Rightarrow 10{{x}^{4}}-320{{x}^{4}}+1920{{x}^{4}}-2560{{x}^{4}}+512{{x}^{4}} \\
& \Rightarrow -438{{x}^{4}} \\
\end{align}$
So, we get that the coefficient of ${{x}^{4}}$ in the expansion of ${{\left( 1+2x \right)}^{4}}{{\left( 2-x \right)}^{5}}$ is -438.
Hence, the answer is -438.
Note: The common mistake that one does while solving this problem is one might multiply the coefficient of ${{x}^{4}}$ in the first part with the coefficient of ${{x}^{0}}$ in second part and multiply the coefficient of ${{x}^{0}}$ in the first part with the coefficient of ${{x}^{4}}$ in second part. Then we get
$\begin{align}
& \Rightarrow 1\left( 10{{x}^{4}} \right)+16{{x}^{4}}\left( 32 \right) \\
& \Rightarrow 10{{x}^{4}}+512{{x}^{4}} \\
& \Rightarrow 522{{x}^{4}} \\
\end{align}$
Then we get the coefficient of ${{x}^{4}}$ as 522. But we need to consider all the possible choices of getting ${{x}^{4}}$ in the expansion.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
