
Find the coefficient of \[{x^2}\] in \[{\left( {\sqrt {\dfrac{x}{3}} + \dfrac{3}{{2x}}} \right)^{10}}\].
Answer
523.2k+ views
Hint: The question given above is of binomial expansion. To find the coefficient of such expressions, first we write the formula of the general term of binomial expansion. Then we try to separate the variable part with the coefficient part. Since we have to find the coefficient of \[{x^2}\], we put the power part of \[x\] equal to \[2\]. We get the value of the position of term whose variable is \[{x^2}\]. Put that value in the coefficient part to get the required coefficient.
Formula used: The formula for general term of a binomial expansion is Let \[{T_{r + 1}}\] be the number of the term, \[r\] be the position of term and \[x\] be the variable, power of binomial is \[n\]. So \[{(r + 1)^{th}}\] term of expansion \[{\left( {a + b} \right)^n}\] is given by, \[{T_{r + 1}} = \mathop C\limits_r^n {a^{n - r}}{b^r}\].
Complete step-by-step answer:
First we write the formula of general term of binomial expansion. Let \[{T_{r + 1}}\] be the number of the term,
\[r\] be the position of term and \[x\] be the variable, power of binomial\[n = 10\]. So,
\[{T_{r + 1}} = \mathop C\limits_r^n {\sqrt {\dfrac{x}{3}} ^{n - r}}{\dfrac{3}{{2x}}^r}\]
Now we try to separate \[x\] from other.
\[
\Rightarrow {T_{r + 1}} = \mathop C\limits_r^{10} {\left( {\dfrac{x}{3}} \right)^{\dfrac{{10 - r}}{2}}}\dfrac{{{3^r}}}{{{2^r}{x^r}}} \\
\Rightarrow {T_{r + 1}} = \mathop C\limits_r^{10} \left( {\dfrac{{{x^{\dfrac{{10 - r}}{2}}}}}{{{3^{\dfrac{{10 - r}}{2}}}}}} \right)\dfrac{{{3^r}}}{{{2^r}{x^r}}} \\
\Rightarrow {T_{r + 1}} = \mathop C\limits_r^{10} \left( {\dfrac{{{3^r}}}{{{3^{\dfrac{{10 - r}}{2}}}{2^r}}}} \right)\dfrac{{{x^{\dfrac{{10 - r}}{2}}}}}{{{x^r}}} \\
\Rightarrow {T_{r + 1}} = \mathop C\limits_r^{10} \left( {\dfrac{{{3^r}}}{{{3^{\dfrac{{10 - r}}{2}}}{2^r}}}} \right){x^{\dfrac{{10 - r}}{{2r}}}} \\
\]
Now, since we have to find coefficient of \[{x^2}\], we put the power part of \[x\] equal to \[2\], so,
\[
\dfrac{{10 - r}}{{2r}} = 2 \\
\Rightarrow 10 - r = 4r \\
\Rightarrow 5r = 10 \\
\Rightarrow r = 2 \\
\]
Hence, \[{T_{r + 1}}\]=\[{T_{2 + 1}} = {T_3}\]. So \[{3^{rd}}\] term have variable \[{x^2}\].
Now, to get the coefficient of variable \[{x^2}\]we put the value of \[r = 2\] in \[\mathop C\limits_r^{10} \left( {\dfrac{{{3^r}}}{{{3^{\dfrac{{10 - r}}{2}}}{2^r}}}} \right){x^{\dfrac{{10 - r}}{{2r}}}}\].
So,
\[
\Rightarrow \mathop C\limits_2^{10} \left( {\dfrac{{{3^2}}}{{{3^{\dfrac{{10 - 2}}{2}}}{2^2}}}} \right) \\
\Rightarrow \mathop C\limits_2^{10} \left( {\dfrac{{{3^2}}}{{{3^{\dfrac{8}{2}}}{2^2}}}} \right) \\
\Rightarrow \mathop C\limits_2^{10} \left( {\dfrac{{{3^2}}}{{{3^4}{2^2}}}} \right) \\
\Rightarrow \mathop C\limits_2^{10} \left( {\dfrac{1}{{{3^2}{2^2}}}} \right) \\
\]
So, the coefficient of \[{x^2}\] is \[\mathop C\limits_2^{10} \left( {\dfrac{1}{{{3^2}{2^2}}}} \right)\].
Note: The Binomial theorem tells us how to expand expressions of the form (a+b)ⁿ, for example, (x+y)⁷. The larger the power is, the harder it is to expand expressions like this directly. But with the Binomial theorem, the process is relatively fast. But one must be careful in calculation as there are chances to miss any term.
Formula used: The formula for general term of a binomial expansion is Let \[{T_{r + 1}}\] be the number of the term, \[r\] be the position of term and \[x\] be the variable, power of binomial is \[n\]. So \[{(r + 1)^{th}}\] term of expansion \[{\left( {a + b} \right)^n}\] is given by, \[{T_{r + 1}} = \mathop C\limits_r^n {a^{n - r}}{b^r}\].
Complete step-by-step answer:
First we write the formula of general term of binomial expansion. Let \[{T_{r + 1}}\] be the number of the term,
\[r\] be the position of term and \[x\] be the variable, power of binomial\[n = 10\]. So,
\[{T_{r + 1}} = \mathop C\limits_r^n {\sqrt {\dfrac{x}{3}} ^{n - r}}{\dfrac{3}{{2x}}^r}\]
Now we try to separate \[x\] from other.
\[
\Rightarrow {T_{r + 1}} = \mathop C\limits_r^{10} {\left( {\dfrac{x}{3}} \right)^{\dfrac{{10 - r}}{2}}}\dfrac{{{3^r}}}{{{2^r}{x^r}}} \\
\Rightarrow {T_{r + 1}} = \mathop C\limits_r^{10} \left( {\dfrac{{{x^{\dfrac{{10 - r}}{2}}}}}{{{3^{\dfrac{{10 - r}}{2}}}}}} \right)\dfrac{{{3^r}}}{{{2^r}{x^r}}} \\
\Rightarrow {T_{r + 1}} = \mathop C\limits_r^{10} \left( {\dfrac{{{3^r}}}{{{3^{\dfrac{{10 - r}}{2}}}{2^r}}}} \right)\dfrac{{{x^{\dfrac{{10 - r}}{2}}}}}{{{x^r}}} \\
\Rightarrow {T_{r + 1}} = \mathop C\limits_r^{10} \left( {\dfrac{{{3^r}}}{{{3^{\dfrac{{10 - r}}{2}}}{2^r}}}} \right){x^{\dfrac{{10 - r}}{{2r}}}} \\
\]
Now, since we have to find coefficient of \[{x^2}\], we put the power part of \[x\] equal to \[2\], so,
\[
\dfrac{{10 - r}}{{2r}} = 2 \\
\Rightarrow 10 - r = 4r \\
\Rightarrow 5r = 10 \\
\Rightarrow r = 2 \\
\]
Hence, \[{T_{r + 1}}\]=\[{T_{2 + 1}} = {T_3}\]. So \[{3^{rd}}\] term have variable \[{x^2}\].
Now, to get the coefficient of variable \[{x^2}\]we put the value of \[r = 2\] in \[\mathop C\limits_r^{10} \left( {\dfrac{{{3^r}}}{{{3^{\dfrac{{10 - r}}{2}}}{2^r}}}} \right){x^{\dfrac{{10 - r}}{{2r}}}}\].
So,
\[
\Rightarrow \mathop C\limits_2^{10} \left( {\dfrac{{{3^2}}}{{{3^{\dfrac{{10 - 2}}{2}}}{2^2}}}} \right) \\
\Rightarrow \mathop C\limits_2^{10} \left( {\dfrac{{{3^2}}}{{{3^{\dfrac{8}{2}}}{2^2}}}} \right) \\
\Rightarrow \mathop C\limits_2^{10} \left( {\dfrac{{{3^2}}}{{{3^4}{2^2}}}} \right) \\
\Rightarrow \mathop C\limits_2^{10} \left( {\dfrac{1}{{{3^2}{2^2}}}} \right) \\
\]
So, the coefficient of \[{x^2}\] is \[\mathop C\limits_2^{10} \left( {\dfrac{1}{{{3^2}{2^2}}}} \right)\].
Note: The Binomial theorem tells us how to expand expressions of the form (a+b)ⁿ, for example, (x+y)⁷. The larger the power is, the harder it is to expand expressions like this directly. But with the Binomial theorem, the process is relatively fast. But one must be careful in calculation as there are chances to miss any term.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

