
Find the area of the shaded part in the figure: (Use π=3.14)
Answer
581.4k+ views
Hint: we will find the diagonal AC, since, AC represents the diameter of the circle. The radius of the circle is half of the diameter. From the radius, we found out we will find the area of the circle shown. Also, find the area of the rectangle from the given graph.
from the subtraction of the area of the rectangle from the area of the circle, we will get the area of the shaded portion.
Given: AD= 5cm, DC= 12cm
Formulas used:
Pythagoras theorem formula; \[\text{hypotenuse}{{\text{e}}^{2}}=\text{side}_{1}^{2}+\text{side}_{2}^{2}\]
Area of circle \[=\pi {{r}^{2}}\]
Area of a rectangle \[=\text{length}\times \text{breadth}\]
Complete Step by step solution:
\[\vartriangle \text{ACD}\] is a right angled triangle.
Using Pythagoras theorem formula;
\[\begin{gathered}
& A{{C}^{2}}=A{{D}^{2}}+D{{C}^{2}} \\
& A{{C}^{2}}={{5}^{2}}+{{12}^{2}} \\
& A{{C}^{2}}=25+144 \\
& A{{C}^{2}}=169 \\
& AC=\sqrt{169} \\
& AC=\pm \,13\text{ cm} \\
\end{gathered}\]
Since AC is a length it cannot be negative therefore AC= 13cm
Through AC which is the diameter of the circle, we can find the radius of the circle. from this circle, we will find the area of the circle.
Area of the shaded region \[=\] Area of the circle \[-\] area of the rectangle ABCD
Thus, by subtracting the area of the circle with the area of the inscribed rectangle we got the area of the shaded region.
from the subtraction of the area of the rectangle from the area of the circle, we will get the area of the shaded portion.
Given: AD= 5cm, DC= 12cm
Formulas used:
Pythagoras theorem formula; \[\text{hypotenuse}{{\text{e}}^{2}}=\text{side}_{1}^{2}+\text{side}_{2}^{2}\]
Area of circle \[=\pi {{r}^{2}}\]
Area of a rectangle \[=\text{length}\times \text{breadth}\]
Complete Step by step solution:
\[\vartriangle \text{ACD}\] is a right angled triangle.
Using Pythagoras theorem formula;
\[\begin{gathered}
& A{{C}^{2}}=A{{D}^{2}}+D{{C}^{2}} \\
& A{{C}^{2}}={{5}^{2}}+{{12}^{2}} \\
& A{{C}^{2}}=25+144 \\
& A{{C}^{2}}=169 \\
& AC=\sqrt{169} \\
& AC=\pm \,13\text{ cm} \\
\end{gathered}\]
Since AC is a length it cannot be negative therefore AC= 13cm
Through AC which is the diameter of the circle, we can find the radius of the circle. from this circle, we will find the area of the circle.
Area of the shaded region \[=\] Area of the circle \[-\] area of the rectangle ABCD
Thus, by subtracting the area of the circle with the area of the inscribed rectangle we got the area of the shaded region.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

How is gypsum formed class 10 chemistry CBSE

If the line 3x + 4y 24 0 intersects the xaxis at t-class-10-maths-CBSE

Sugar present in DNA is A Heptose B Hexone C Tetrose class 10 biology CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

