 Questions & Answers    Question Answers

# Find the area bounded by the ellipse $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ and the ordinates $x = 0$and $x = ae$, where ${b^2} = {a^2}\left( {1 - {e^2}} \right)$ and $e < 1$.  Answer Verified
Hint: Simplify the given ellipse equation and integrate within the given ordinate limits to find the area.

An ellipse of the form $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ will meet the X-axis at (a, 0) and the Y-axis at (0, b). Let these points be P (a,0) and Q (0, b). It is symmetrical about the axes.
The ordinates given are $x = 0$and $x = ae$ which will be parallel to the Y-axis as shown in the figure.
The shaded area is the area bounded by the ellipse and the given ordinates. Required area = Area of the shaded region
= $2 \times$Area of QOCD
=$2 \times \int_0^{ae} y dx$ …(1)
The given equation is $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$. Let us find the value of y from this equation and substitute in equation (1).
$\begin{gathered} \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 \\ \begin{array}{*{20}{l}} \begin{gathered} \dfrac{{{y^2}}}{{{b^2}}} = 1 - \dfrac{{{x^2}}}{{{a^2}}} \\ \dfrac{{{y^2}}}{{{b^2}}} = \dfrac{{{a^2} - {x^2}}}{{{a^2}}} \\ \end{gathered} \\ {{y^2} = \dfrac{{{b^2}}}{{{a^2}}}\left( {{a^2} - {x^2}} \right)} \\ {y = \pm \sqrt {\dfrac{{{b^2}}}{{{a^2}}}\left( {{a^2} - {x^2}} \right)} } \\ {y = \pm \dfrac{b}{a}\sqrt {\left( {{a^2} - {x^2}} \right)} } \end{array} \\ \end{gathered}$
Since, the area in equation (1) which is the area of QOCD is in the 1st quadrant. Hence, the value of y will be positive.
Hence, $y = \dfrac{b}{a}\sqrt {\left( {{a^2} - {x^2}} \right)}$ …(2)
Substituting (2) in (1),
Required area =$2 \times \int_0^{ae} y dx$
$\begin{array}{*{20}{l}} { = 2\mathop \smallint \limits_0^{ae} \dfrac{b}{a}\sqrt {{a^2} - {x^2}} dx} \\ { = \dfrac{{2b}}{a}\mathop \smallint \limits_0^{ae} \sqrt {{a^2} - {x^2}} dx} \end{array}$ (Since a and b are constants)
We know that, $\mathop \smallint \nolimits^ \sqrt {{a^2} - {x^2}} dx = \dfrac{{x\sqrt {{a^2} - {x^2}} }}{2} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}(\dfrac{x}{a}) + c$
Using this in the previous step, we get
Required area = $\dfrac{{2b}}{a}[\dfrac{1}{2}x\sqrt {{a^2} - {x^2}} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}\dfrac{x}{a}]_0^{ae}$ $\begin{gathered} \begin{array}{*{20}{l}} { = \dfrac{{2b}}{a}[(\dfrac{{ae}}{2}\sqrt {{a^2} - {{(ae)}^2}} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{{ae}}{a}) - (\dfrac{0}{2}\sqrt {{a^2} - 0} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(\dfrac{0}{a}))]} \\ { = \dfrac{{2b}}{a}[\dfrac{{ae}}{2}\sqrt {{a^2} - {a^2}{e^2}} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(e) - 0 - \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(0)]} \\ { = \dfrac{{2b}}{a}[\dfrac{{ae}}{2} \cdot a\sqrt {1 - {e^2}} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}e - 0]} \end{array} \\ \begin{array}{*{20}{l}} { = \dfrac{{2b}}{a}[\dfrac{{{a^2}e}}{2}\sqrt {1 - {e^2}} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}e]} \\ { = \dfrac{{2b}}{a}(\dfrac{{{a^2}}}{2})[e\sqrt {1 - {e^2}} + {{\sin }^{ - 1}}e]} \\ { = ab[e\sqrt {1 - {e^2}} + {{\sin }^{ - 1}}e]} \end{array} \\ \end{gathered}$
Required Area bounded by the ellipse $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ and the ordinates $x = 0$and $x = ae$
$= ab[e\sqrt {1 - {e^2}} + {\sin ^{ - 1}}e]$

Note: The required area can also be found by integrating the entire shaded area QOABCD instead of finding $2 \times$Area of QOCD. It would be a little lengthier and more unnecessary because the given ellipse is symmetrical about the origin.
Bookmark added to your notes.
View Notes
Area of Ellipse  Area of an Ellipse  Area Between Two Curves Calculus  Area Under Curve Calculus  Determinant to Find the Area of a Triangle  Difference Between Area and Surface Area  Ellipse  Ellipse Perimeter  To Find the Surface Tension of Water by Capillary Rise Method  Equations Of Ellipse  