Answer
Verified
392.4k+ views
Hint: We need to find the acute angle \[\theta \] through which coordinate axes should be rotated for the point \[A(2,4)\] to attend new abscissa \[4\]. To find the new position we need to use the identity given below in the hint section.
Formula used:
The acute angle\[\theta \] through which coordinate axes should be rotated for the point \[A(x,y)\] to attend new abscissa \[X\] is given by,
\[X = x\cos \theta + y\sin \theta \]
Complete step-by-step solution:
We have to find the acute angle \[\theta \] through which coordinate axes should be rotated for the point \[A(2,4)\] to attend new abscissa \[4\].
Let us note the given information,
\[A(x,y) = A(2,4)\]
Let us use the below identity,
The acute angle \[\theta \] through which coordinate axes should be rotated for the point \[A(x,y)\] to attend new abscissa \[X\] is given by,
\[X = x\cos \theta + y\sin \theta \]
On putting values \[(x,y) = (2,4)\] in above equation we get,
\[4 = 2\cos \theta + 4\sin \theta \]
On dividing the equation by $2$ on both sides we get,
\[2 = \cos \theta + 2\sin \theta \]
On rearranging the terms on both sides of the equation we get,
\[\cos \theta = 2 - 2\sin \theta \]
On squaring both side we get,
\[{\cos ^2}\theta = {\left( {2 - 2\sin \theta } \right)^2}\]
On performing square of the bracket using the formula \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\] on R.H.S. we get,
\[{\cos ^2}\theta = 4 - 8\sin \theta + 4{\sin ^2}\theta \]
On putting value \[{\cos ^2}\theta = 1 - {\sin ^2}\theta \] in above equation we get,
\[1 - {\sin ^2}\theta = 4 - 8\sin \theta + 4{\sin ^2}\theta \]
On arranging all the terms on L.H.S. and performing the addition we get,
\[5{\sin ^2}\theta - 8\sin \theta + 3 = 0\]
On splitting the middle term to factorize the equation we get,
\[5{\sin ^2}\theta - 5\sin \theta - 3\sin \theta + 3 = 0\]
On taking common terms out we get,
\[5\sin \theta (1 - \sin \theta ) - 3(1 - \sin \theta ) = 0\]
On taking common term out we get,
\[\left( {\sin \theta - 1} \right)\left( {5\sin \theta - 3} \right) = 0\]
On equating both factors to zero we get,
\[\sin \theta - 1 = 0,5\sin \theta - 3 = 0\]
On rearranging the terms of the equation we get,
\[\sin \theta = 1,\sin \theta = \dfrac{3}{5}\]
On considering first value,
\[\sin \theta = 1\]
From above value we can write that,
\[\tan \theta = \infty \]
Thus this value \[\sin \theta = 1\]is invalid.
On considering second value,
\[\sin \theta = \dfrac{3}{5}\]
From above value we can write that,
\[\cos \theta = \dfrac{4}{5}\]
On taking ratios of both values we can write that,
\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
On putting both values we can write that,
\[\tan \theta = \dfrac{{\dfrac{3}{5}}}{{\dfrac{4}{5}}}\]
On cancelling the common denominator and performing the operation we get,
\[\tan \theta = \dfrac{3}{4}\]
Hence option A)$\tan \theta = \dfrac{3}{4}$ is correct.
Note: We need to calculate the new angle using the identity and by performing operations. We need to choose a valid value and we need to discard the value which gives the answer which is out of the range.
Formula used:
The acute angle\[\theta \] through which coordinate axes should be rotated for the point \[A(x,y)\] to attend new abscissa \[X\] is given by,
\[X = x\cos \theta + y\sin \theta \]
Complete step-by-step solution:
We have to find the acute angle \[\theta \] through which coordinate axes should be rotated for the point \[A(2,4)\] to attend new abscissa \[4\].
Let us note the given information,
\[A(x,y) = A(2,4)\]
Let us use the below identity,
The acute angle \[\theta \] through which coordinate axes should be rotated for the point \[A(x,y)\] to attend new abscissa \[X\] is given by,
\[X = x\cos \theta + y\sin \theta \]
On putting values \[(x,y) = (2,4)\] in above equation we get,
\[4 = 2\cos \theta + 4\sin \theta \]
On dividing the equation by $2$ on both sides we get,
\[2 = \cos \theta + 2\sin \theta \]
On rearranging the terms on both sides of the equation we get,
\[\cos \theta = 2 - 2\sin \theta \]
On squaring both side we get,
\[{\cos ^2}\theta = {\left( {2 - 2\sin \theta } \right)^2}\]
On performing square of the bracket using the formula \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\] on R.H.S. we get,
\[{\cos ^2}\theta = 4 - 8\sin \theta + 4{\sin ^2}\theta \]
On putting value \[{\cos ^2}\theta = 1 - {\sin ^2}\theta \] in above equation we get,
\[1 - {\sin ^2}\theta = 4 - 8\sin \theta + 4{\sin ^2}\theta \]
On arranging all the terms on L.H.S. and performing the addition we get,
\[5{\sin ^2}\theta - 8\sin \theta + 3 = 0\]
On splitting the middle term to factorize the equation we get,
\[5{\sin ^2}\theta - 5\sin \theta - 3\sin \theta + 3 = 0\]
On taking common terms out we get,
\[5\sin \theta (1 - \sin \theta ) - 3(1 - \sin \theta ) = 0\]
On taking common term out we get,
\[\left( {\sin \theta - 1} \right)\left( {5\sin \theta - 3} \right) = 0\]
On equating both factors to zero we get,
\[\sin \theta - 1 = 0,5\sin \theta - 3 = 0\]
On rearranging the terms of the equation we get,
\[\sin \theta = 1,\sin \theta = \dfrac{3}{5}\]
On considering first value,
\[\sin \theta = 1\]
From above value we can write that,
\[\tan \theta = \infty \]
Thus this value \[\sin \theta = 1\]is invalid.
On considering second value,
\[\sin \theta = \dfrac{3}{5}\]
From above value we can write that,
\[\cos \theta = \dfrac{4}{5}\]
On taking ratios of both values we can write that,
\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
On putting both values we can write that,
\[\tan \theta = \dfrac{{\dfrac{3}{5}}}{{\dfrac{4}{5}}}\]
On cancelling the common denominator and performing the operation we get,
\[\tan \theta = \dfrac{3}{4}\]
Hence option A)$\tan \theta = \dfrac{3}{4}$ is correct.
Note: We need to calculate the new angle using the identity and by performing operations. We need to choose a valid value and we need to discard the value which gives the answer which is out of the range.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE