Answer
Verified
495.6k+ views
Hint: In the question, we are given the first term (a) and the last term (l) of the arithmetic
progression. Also, we can find the common difference (d) of this A.P. by subtracting first term from
the second term. Using the formula $l=a+\left( n-1 \right)d$, we can find the number of terms (n).
The 8 th term from the end will be the (n-8+1) th term from the start.
Before proceeding with the question, we must know all the formulas that will be required to solve
this question. Let us consider an arithmetic progression having it’s first term as ‘a’, last term as ‘l’,
common difference as ‘d’ and ‘n’ be the number of terms.
In arithmetic progressions, we have a formula,
$l=a+\left( n-1 \right)d.............\left( 1 \right)$
If we want to find r th term from the starting, it is given by the formula,
${{a}_{r}}=a+\left( r-1 \right)d............\left( 2 \right)$
Also, the r th term from the end will be the (n-r+1) th $...........\left( 3 \right)$ term from the starting.
In the question, we are given an A.P. 7, 10, 13, …….., 184. The common difference (d) of this A.P. will
be the difference of the first and the second term and is equal to $10-7=3$. Let us first find the
number of terms ‘n’ of this A.P.
Substituting $a=7,l=184,d=3$ in formula $\left( 1 \right)$, we get,
$\begin{align}
& 184=7+\left( n-1 \right)\left( 3 \right) \\
& \Rightarrow \left( n-1 \right)\left( 3 \right)=177 \\
& \Rightarrow \left( n-1 \right)=59 \\
& \Rightarrow n=60 \\
\end{align}$
In the question, we are asked to find the 8 th term from the end. Using formula $\left( 3 \right)$, the
8 th term from the end will be the (60-8+1) th i.e. 53 th term from the start. Substituting $a=7,d=3,r=53$
in formula $\left( 2 \right)$, the 53 th term from the start is,
$\begin{align}
& {{a}_{53}}=7+\left( 53-1 \right)\left( 3 \right) \\
& \Rightarrow {{a}_{53}}=7+\left( 52 \right)\left( 3 \right) \\
& \Rightarrow {{a}_{53}}=7+156 \\
& \Rightarrow {{a}_{53}}=163 \\
\end{align}$
Hence, the 8 th term from the end of the A.P. is 163.
Note: There is a possibility that one may commit a mistake while converting the number of from the end to the number of terms from the starting. To convert the r th term from the end, there is a possibility that one may use the formula (n-r) instead of the formula (n-r+1) where ‘n’ is the total number of terms in the A.P.
progression. Also, we can find the common difference (d) of this A.P. by subtracting first term from
the second term. Using the formula $l=a+\left( n-1 \right)d$, we can find the number of terms (n).
The 8 th term from the end will be the (n-8+1) th term from the start.
Before proceeding with the question, we must know all the formulas that will be required to solve
this question. Let us consider an arithmetic progression having it’s first term as ‘a’, last term as ‘l’,
common difference as ‘d’ and ‘n’ be the number of terms.
In arithmetic progressions, we have a formula,
$l=a+\left( n-1 \right)d.............\left( 1 \right)$
If we want to find r th term from the starting, it is given by the formula,
${{a}_{r}}=a+\left( r-1 \right)d............\left( 2 \right)$
Also, the r th term from the end will be the (n-r+1) th $...........\left( 3 \right)$ term from the starting.
In the question, we are given an A.P. 7, 10, 13, …….., 184. The common difference (d) of this A.P. will
be the difference of the first and the second term and is equal to $10-7=3$. Let us first find the
number of terms ‘n’ of this A.P.
Substituting $a=7,l=184,d=3$ in formula $\left( 1 \right)$, we get,
$\begin{align}
& 184=7+\left( n-1 \right)\left( 3 \right) \\
& \Rightarrow \left( n-1 \right)\left( 3 \right)=177 \\
& \Rightarrow \left( n-1 \right)=59 \\
& \Rightarrow n=60 \\
\end{align}$
In the question, we are asked to find the 8 th term from the end. Using formula $\left( 3 \right)$, the
8 th term from the end will be the (60-8+1) th i.e. 53 th term from the start. Substituting $a=7,d=3,r=53$
in formula $\left( 2 \right)$, the 53 th term from the start is,
$\begin{align}
& {{a}_{53}}=7+\left( 53-1 \right)\left( 3 \right) \\
& \Rightarrow {{a}_{53}}=7+\left( 52 \right)\left( 3 \right) \\
& \Rightarrow {{a}_{53}}=7+156 \\
& \Rightarrow {{a}_{53}}=163 \\
\end{align}$
Hence, the 8 th term from the end of the A.P. is 163.
Note: There is a possibility that one may commit a mistake while converting the number of from the end to the number of terms from the starting. To convert the r th term from the end, there is a possibility that one may use the formula (n-r) instead of the formula (n-r+1) where ‘n’ is the total number of terms in the A.P.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it