Find out the number of factors of $abc$ if $\dfrac{{a + 2}}{2} = \dfrac{{b + 4}}{4} = \dfrac{{c + 6}}{6} = 12$.
Last updated date: 20th Mar 2023
•
Total views: 305.1k
•
Views today: 5.83k
Answer
305.1k+ views
Hint: Find out the value of $a, b$ and $c$ separately. Then calculate $abc$ and factorize it in its prime factor form. If a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the number of factors of this number is $\left( {a + 1} \right) \times \left( {b + 1} \right) \times \left( {c + 1} \right) \times ...$ Use this method to find the number of factors.
Complete step-by-step answer:
According to the question, we have:
$ \Rightarrow \dfrac{{a + 2}}{2} = \dfrac{{b + 4}}{4} = \dfrac{{c + 6}}{6} = 12 .....(i)$
We will calculate the values of $a,b$ and $c$ separately.
So, from equation $(i)$, we have:
$
\Rightarrow \dfrac{{a + 2}}{2} = 12 \\
\Rightarrow a + 2 = 24 \\
\Rightarrow a = 22 .....(ii) \\
$
Again using equation $(i)$, we have:
$
\Rightarrow \dfrac{{b + 4}}{4} = 12 \\
\Rightarrow b + 4 = 48 \\
\Rightarrow b = 44 .....(iii) \\
$
Using equation $(i)$ for $c$, we have:
$
\Rightarrow \dfrac{{c + 6}}{6} = 12 \\
\Rightarrow c + 6 = 72 \\
\Rightarrow c = 66 .....(iv) \\
$
From equations $(ii)$, $(iii)$ and $(iv)$, we have:
$
\Rightarrow abc = 22 \times 44 \times 66 \\
\Rightarrow abc = 2 \times 11 \times 4 \times 11 \times 6 \times 11 \\
\Rightarrow abc = 2 \times 4 \times 6 \times {11^3} \\
\Rightarrow abc = 2 \times {2^2} \times 2 \times 3 \times {11^3} \\
$
$ \Rightarrow abc = {2^4} \times {3^1} \times {11^3}$
And we know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the number of factors of this number is $\left( {a + 1} \right) \times \left( {b + 1} \right) \times \left( {c + 1} \right) \times ...$
Therefore the number of factors of $abc$ is $\left( {4 + 1} \right) \times \left( {1 + 1} \right) \times \left( {3 + 1} \right) = 5 \times 2 \times 4 = 40$
Thus, there are 40 factors of $abc$.
Note: We can also calculate the sum of factors as:
If the number is ${p_1}^a \times {p_2}^b \times {p_3}^c....$ (${p_1},{p_2}$,${p_3}$ are all prime numbers), then the sum of its factors is:
$ \Rightarrow {\text{Sum }} = \dfrac{{{p_1}^{a + 1} - 1}}{{{p_1} - 1}} \times \dfrac{{{p_2}^{b + 1} - 1}}{{{p_2} - 1}} \times \dfrac{{{p_3}^{c + 1} - 1}}{{{p_3} - 1}} \times ....$
Using this for $abc = {2^4} \times {3^1} \times {11^3}$, sum of factors will be:
$ \Rightarrow {\text{Sum }} = \dfrac{{{2^5} - 1}}{{2 - 1}} \times \dfrac{{{3^2} - 1}}{{3 - 1}} \times \dfrac{{{{11}^4} - 1}}{{11 - 1}} \times ....$
Complete step-by-step answer:
According to the question, we have:
$ \Rightarrow \dfrac{{a + 2}}{2} = \dfrac{{b + 4}}{4} = \dfrac{{c + 6}}{6} = 12 .....(i)$
We will calculate the values of $a,b$ and $c$ separately.
So, from equation $(i)$, we have:
$
\Rightarrow \dfrac{{a + 2}}{2} = 12 \\
\Rightarrow a + 2 = 24 \\
\Rightarrow a = 22 .....(ii) \\
$
Again using equation $(i)$, we have:
$
\Rightarrow \dfrac{{b + 4}}{4} = 12 \\
\Rightarrow b + 4 = 48 \\
\Rightarrow b = 44 .....(iii) \\
$
Using equation $(i)$ for $c$, we have:
$
\Rightarrow \dfrac{{c + 6}}{6} = 12 \\
\Rightarrow c + 6 = 72 \\
\Rightarrow c = 66 .....(iv) \\
$
From equations $(ii)$, $(iii)$ and $(iv)$, we have:
$
\Rightarrow abc = 22 \times 44 \times 66 \\
\Rightarrow abc = 2 \times 11 \times 4 \times 11 \times 6 \times 11 \\
\Rightarrow abc = 2 \times 4 \times 6 \times {11^3} \\
\Rightarrow abc = 2 \times {2^2} \times 2 \times 3 \times {11^3} \\
$
$ \Rightarrow abc = {2^4} \times {3^1} \times {11^3}$
And we know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the number of factors of this number is $\left( {a + 1} \right) \times \left( {b + 1} \right) \times \left( {c + 1} \right) \times ...$
Therefore the number of factors of $abc$ is $\left( {4 + 1} \right) \times \left( {1 + 1} \right) \times \left( {3 + 1} \right) = 5 \times 2 \times 4 = 40$
Thus, there are 40 factors of $abc$.
Note: We can also calculate the sum of factors as:
If the number is ${p_1}^a \times {p_2}^b \times {p_3}^c....$ (${p_1},{p_2}$,${p_3}$ are all prime numbers), then the sum of its factors is:
$ \Rightarrow {\text{Sum }} = \dfrac{{{p_1}^{a + 1} - 1}}{{{p_1} - 1}} \times \dfrac{{{p_2}^{b + 1} - 1}}{{{p_2} - 1}} \times \dfrac{{{p_3}^{c + 1} - 1}}{{{p_3} - 1}} \times ....$
Using this for $abc = {2^4} \times {3^1} \times {11^3}$, sum of factors will be:
$ \Rightarrow {\text{Sum }} = \dfrac{{{2^5} - 1}}{{2 - 1}} \times \dfrac{{{3^2} - 1}}{{3 - 1}} \times \dfrac{{{{11}^4} - 1}}{{11 - 1}} \times ....$
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
