
Find out the number of factors of $abc$ if $\dfrac{{a + 2}}{2} = \dfrac{{b + 4}}{4} = \dfrac{{c + 6}}{6} = 12$.
Answer
605.1k+ views
Hint: Find out the value of $a, b$ and $c$ separately. Then calculate $abc$ and factorize it in its prime factor form. If a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the number of factors of this number is $\left( {a + 1} \right) \times \left( {b + 1} \right) \times \left( {c + 1} \right) \times ...$ Use this method to find the number of factors.
Complete step-by-step answer:
According to the question, we have:
$ \Rightarrow \dfrac{{a + 2}}{2} = \dfrac{{b + 4}}{4} = \dfrac{{c + 6}}{6} = 12 .....(i)$
We will calculate the values of $a,b$ and $c$ separately.
So, from equation $(i)$, we have:
$
\Rightarrow \dfrac{{a + 2}}{2} = 12 \\
\Rightarrow a + 2 = 24 \\
\Rightarrow a = 22 .....(ii) \\
$
Again using equation $(i)$, we have:
$
\Rightarrow \dfrac{{b + 4}}{4} = 12 \\
\Rightarrow b + 4 = 48 \\
\Rightarrow b = 44 .....(iii) \\
$
Using equation $(i)$ for $c$, we have:
$
\Rightarrow \dfrac{{c + 6}}{6} = 12 \\
\Rightarrow c + 6 = 72 \\
\Rightarrow c = 66 .....(iv) \\
$
From equations $(ii)$, $(iii)$ and $(iv)$, we have:
$
\Rightarrow abc = 22 \times 44 \times 66 \\
\Rightarrow abc = 2 \times 11 \times 4 \times 11 \times 6 \times 11 \\
\Rightarrow abc = 2 \times 4 \times 6 \times {11^3} \\
\Rightarrow abc = 2 \times {2^2} \times 2 \times 3 \times {11^3} \\
$
$ \Rightarrow abc = {2^4} \times {3^1} \times {11^3}$
And we know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the number of factors of this number is $\left( {a + 1} \right) \times \left( {b + 1} \right) \times \left( {c + 1} \right) \times ...$
Therefore the number of factors of $abc$ is $\left( {4 + 1} \right) \times \left( {1 + 1} \right) \times \left( {3 + 1} \right) = 5 \times 2 \times 4 = 40$
Thus, there are 40 factors of $abc$.
Note: We can also calculate the sum of factors as:
If the number is ${p_1}^a \times {p_2}^b \times {p_3}^c....$ (${p_1},{p_2}$,${p_3}$ are all prime numbers), then the sum of its factors is:
$ \Rightarrow {\text{Sum }} = \dfrac{{{p_1}^{a + 1} - 1}}{{{p_1} - 1}} \times \dfrac{{{p_2}^{b + 1} - 1}}{{{p_2} - 1}} \times \dfrac{{{p_3}^{c + 1} - 1}}{{{p_3} - 1}} \times ....$
Using this for $abc = {2^4} \times {3^1} \times {11^3}$, sum of factors will be:
$ \Rightarrow {\text{Sum }} = \dfrac{{{2^5} - 1}}{{2 - 1}} \times \dfrac{{{3^2} - 1}}{{3 - 1}} \times \dfrac{{{{11}^4} - 1}}{{11 - 1}} \times ....$
Complete step-by-step answer:
According to the question, we have:
$ \Rightarrow \dfrac{{a + 2}}{2} = \dfrac{{b + 4}}{4} = \dfrac{{c + 6}}{6} = 12 .....(i)$
We will calculate the values of $a,b$ and $c$ separately.
So, from equation $(i)$, we have:
$
\Rightarrow \dfrac{{a + 2}}{2} = 12 \\
\Rightarrow a + 2 = 24 \\
\Rightarrow a = 22 .....(ii) \\
$
Again using equation $(i)$, we have:
$
\Rightarrow \dfrac{{b + 4}}{4} = 12 \\
\Rightarrow b + 4 = 48 \\
\Rightarrow b = 44 .....(iii) \\
$
Using equation $(i)$ for $c$, we have:
$
\Rightarrow \dfrac{{c + 6}}{6} = 12 \\
\Rightarrow c + 6 = 72 \\
\Rightarrow c = 66 .....(iv) \\
$
From equations $(ii)$, $(iii)$ and $(iv)$, we have:
$
\Rightarrow abc = 22 \times 44 \times 66 \\
\Rightarrow abc = 2 \times 11 \times 4 \times 11 \times 6 \times 11 \\
\Rightarrow abc = 2 \times 4 \times 6 \times {11^3} \\
\Rightarrow abc = 2 \times {2^2} \times 2 \times 3 \times {11^3} \\
$
$ \Rightarrow abc = {2^4} \times {3^1} \times {11^3}$
And we know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the number of factors of this number is $\left( {a + 1} \right) \times \left( {b + 1} \right) \times \left( {c + 1} \right) \times ...$
Therefore the number of factors of $abc$ is $\left( {4 + 1} \right) \times \left( {1 + 1} \right) \times \left( {3 + 1} \right) = 5 \times 2 \times 4 = 40$
Thus, there are 40 factors of $abc$.
Note: We can also calculate the sum of factors as:
If the number is ${p_1}^a \times {p_2}^b \times {p_3}^c....$ (${p_1},{p_2}$,${p_3}$ are all prime numbers), then the sum of its factors is:
$ \Rightarrow {\text{Sum }} = \dfrac{{{p_1}^{a + 1} - 1}}{{{p_1} - 1}} \times \dfrac{{{p_2}^{b + 1} - 1}}{{{p_2} - 1}} \times \dfrac{{{p_3}^{c + 1} - 1}}{{{p_3} - 1}} \times ....$
Using this for $abc = {2^4} \times {3^1} \times {11^3}$, sum of factors will be:
$ \Rightarrow {\text{Sum }} = \dfrac{{{2^5} - 1}}{{2 - 1}} \times \dfrac{{{3^2} - 1}}{{3 - 1}} \times \dfrac{{{{11}^4} - 1}}{{11 - 1}} \times ....$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

