
Find out the number of factors of $abc$ if $\dfrac{{a + 2}}{2} = \dfrac{{b + 4}}{4} = \dfrac{{c + 6}}{6} = 12$.
Answer
513.9k+ views
Hint: Find out the value of $a, b$ and $c$ separately. Then calculate $abc$ and factorize it in its prime factor form. If a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the number of factors of this number is $\left( {a + 1} \right) \times \left( {b + 1} \right) \times \left( {c + 1} \right) \times ...$ Use this method to find the number of factors.
Complete step-by-step answer:
According to the question, we have:
$ \Rightarrow \dfrac{{a + 2}}{2} = \dfrac{{b + 4}}{4} = \dfrac{{c + 6}}{6} = 12 .....(i)$
We will calculate the values of $a,b$ and $c$ separately.
So, from equation $(i)$, we have:
$
\Rightarrow \dfrac{{a + 2}}{2} = 12 \\
\Rightarrow a + 2 = 24 \\
\Rightarrow a = 22 .....(ii) \\
$
Again using equation $(i)$, we have:
$
\Rightarrow \dfrac{{b + 4}}{4} = 12 \\
\Rightarrow b + 4 = 48 \\
\Rightarrow b = 44 .....(iii) \\
$
Using equation $(i)$ for $c$, we have:
$
\Rightarrow \dfrac{{c + 6}}{6} = 12 \\
\Rightarrow c + 6 = 72 \\
\Rightarrow c = 66 .....(iv) \\
$
From equations $(ii)$, $(iii)$ and $(iv)$, we have:
$
\Rightarrow abc = 22 \times 44 \times 66 \\
\Rightarrow abc = 2 \times 11 \times 4 \times 11 \times 6 \times 11 \\
\Rightarrow abc = 2 \times 4 \times 6 \times {11^3} \\
\Rightarrow abc = 2 \times {2^2} \times 2 \times 3 \times {11^3} \\
$
$ \Rightarrow abc = {2^4} \times {3^1} \times {11^3}$
And we know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the number of factors of this number is $\left( {a + 1} \right) \times \left( {b + 1} \right) \times \left( {c + 1} \right) \times ...$
Therefore the number of factors of $abc$ is $\left( {4 + 1} \right) \times \left( {1 + 1} \right) \times \left( {3 + 1} \right) = 5 \times 2 \times 4 = 40$
Thus, there are 40 factors of $abc$.
Note: We can also calculate the sum of factors as:
If the number is ${p_1}^a \times {p_2}^b \times {p_3}^c....$ (${p_1},{p_2}$,${p_3}$ are all prime numbers), then the sum of its factors is:
$ \Rightarrow {\text{Sum }} = \dfrac{{{p_1}^{a + 1} - 1}}{{{p_1} - 1}} \times \dfrac{{{p_2}^{b + 1} - 1}}{{{p_2} - 1}} \times \dfrac{{{p_3}^{c + 1} - 1}}{{{p_3} - 1}} \times ....$
Using this for $abc = {2^4} \times {3^1} \times {11^3}$, sum of factors will be:
$ \Rightarrow {\text{Sum }} = \dfrac{{{2^5} - 1}}{{2 - 1}} \times \dfrac{{{3^2} - 1}}{{3 - 1}} \times \dfrac{{{{11}^4} - 1}}{{11 - 1}} \times ....$
Complete step-by-step answer:
According to the question, we have:
$ \Rightarrow \dfrac{{a + 2}}{2} = \dfrac{{b + 4}}{4} = \dfrac{{c + 6}}{6} = 12 .....(i)$
We will calculate the values of $a,b$ and $c$ separately.
So, from equation $(i)$, we have:
$
\Rightarrow \dfrac{{a + 2}}{2} = 12 \\
\Rightarrow a + 2 = 24 \\
\Rightarrow a = 22 .....(ii) \\
$
Again using equation $(i)$, we have:
$
\Rightarrow \dfrac{{b + 4}}{4} = 12 \\
\Rightarrow b + 4 = 48 \\
\Rightarrow b = 44 .....(iii) \\
$
Using equation $(i)$ for $c$, we have:
$
\Rightarrow \dfrac{{c + 6}}{6} = 12 \\
\Rightarrow c + 6 = 72 \\
\Rightarrow c = 66 .....(iv) \\
$
From equations $(ii)$, $(iii)$ and $(iv)$, we have:
$
\Rightarrow abc = 22 \times 44 \times 66 \\
\Rightarrow abc = 2 \times 11 \times 4 \times 11 \times 6 \times 11 \\
\Rightarrow abc = 2 \times 4 \times 6 \times {11^3} \\
\Rightarrow abc = 2 \times {2^2} \times 2 \times 3 \times {11^3} \\
$
$ \Rightarrow abc = {2^4} \times {3^1} \times {11^3}$
And we know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the number of factors of this number is $\left( {a + 1} \right) \times \left( {b + 1} \right) \times \left( {c + 1} \right) \times ...$
Therefore the number of factors of $abc$ is $\left( {4 + 1} \right) \times \left( {1 + 1} \right) \times \left( {3 + 1} \right) = 5 \times 2 \times 4 = 40$
Thus, there are 40 factors of $abc$.
Note: We can also calculate the sum of factors as:
If the number is ${p_1}^a \times {p_2}^b \times {p_3}^c....$ (${p_1},{p_2}$,${p_3}$ are all prime numbers), then the sum of its factors is:
$ \Rightarrow {\text{Sum }} = \dfrac{{{p_1}^{a + 1} - 1}}{{{p_1} - 1}} \times \dfrac{{{p_2}^{b + 1} - 1}}{{{p_2} - 1}} \times \dfrac{{{p_3}^{c + 1} - 1}}{{{p_3} - 1}} \times ....$
Using this for $abc = {2^4} \times {3^1} \times {11^3}$, sum of factors will be:
$ \Rightarrow {\text{Sum }} = \dfrac{{{2^5} - 1}}{{2 - 1}} \times \dfrac{{{3^2} - 1}}{{3 - 1}} \times \dfrac{{{{11}^4} - 1}}{{11 - 1}} \times ....$
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

State the laws of reflection of light

Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
