
Find: $\int{(x+3)\sqrt{3-4x-{{x}^{2}}}}dx.$
Answer
508.5k+ views
Hint: The given integration is in the form of $\int{\left( px+q \right)}\sqrt{a{{x}^{2}}+bx+c}$. in such type of integration, we have to assume that $px+q=A.\dfrac{d}{dx}\left( a{{x}^{2}}+bx+c \right)+B$, here $A\text{ and }B$are constant which is to be found. Here we have $p=1,q=3,a=-1,b=-4,c=3$. After this transformation we get the integrand which is easily integrable. After simplification we get sum of two integration in which one can be find by use of substitution method and other is based on standard form.
Complete step by step answer:
We have to integrate $\int{(x+3)\sqrt{3-4x-{{x}^{2}}}}dx$let us suppose this is $I$, so we can write
$I=\int{(x+3)\sqrt{3-4x-{{x}^{2}}}}dx$
Now we assume that
$x+3=A.\dfrac{d}{dx}\left( 3-4x-{{x}^{2}} \right)+B$
As we now, that $\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}},\dfrac{dc}{dx}=0$, where $c$is a constant, so we can write further
$\begin{align}
& x+3=A(-4-2x)+B \\
& \Rightarrow x+3=-4A-2Ax+B \\
& \Rightarrow x+3=\left( -4A+B \right)+\left( -2Ax \right) \\
\end{align}$
Now in order to find the value of $A\text{ and }B$, we have to compare, so on comparing, we have
$\begin{align}
& -2A=1 \\
& \Rightarrow A=-\dfrac{1}{2} \\
\end{align}$
And
$-4A+B=3$
Putting the value of $\Rightarrow A=-\dfrac{1}{2}$, we get
$\begin{align}
& -4\left( \dfrac{-1}{2} \right)+B=3 \\
& \Rightarrow B=3-2 \\
& \Rightarrow B=1 \\
\end{align}$
So, we can write
$x+3=\left( \dfrac{-1}{2} \right)\left( -4-2x \right)+1$
Now we can write the given integration as
$\begin{align}
& I=\int{\left\{ -\dfrac{1}{2}(-4-2x)+1 \right\}\sqrt{3-4x-{{x}^{2}}}}dx \\
& I=\int{\left\{ -\dfrac{1}{2}(-4-2x) \right\}\sqrt{3-4x-{{x}^{2}}}}dx+\int{\sqrt{3-4x-{{x}^{2}}}}dx \\
\end{align}$
Here we get the given integration as the sum of two integration, so, we can write
$I={{I}_{1}}+{{I}_{2}}$
Here ${{I}_{1}}=\int{\left\{ -\dfrac{1}{2}(-4-2x) \right\}\sqrt{3-4x-{{x}^{2}}}}dx$
And ${{I}_{2}}=\int{\sqrt{3-4x-{{x}^{2}}}}dx$
Now we calculate both integrands separately, first we calculate
${{I}_{1}}=\int{\left\{ -\dfrac{1}{2}(-4-2x) \right\}\sqrt{3-4x-{{x}^{2}}}}dx$
Let $3-4x-{{x}^{2}}=t$
Differentiating both sides, we can write
$\left( -4-2x \right)dx=dt$
Now substituting the above, we can write
${{I}_{1}}=\dfrac{-1}{2}\int{\sqrt{t}}dt$
As we know that $\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}+c$
We can write
$\begin{align}
& {{I}_{1}}=\dfrac{-1}{2}\left( \dfrac{{{t}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1} \right) \\
& {{I}_{1}}=\left( \dfrac{-1}{2} \right)\left( {{t}^{\dfrac{3}{2}}} \right)\left( \dfrac{2}{3} \right) \\
& {{I}_{1}}=\left( \dfrac{-1}{3} \right)\left( {{t}^{\dfrac{3}{2}}} \right) \\
\end{align}$
Now we substitute the assumed value of $t$we can write
${{I}_{1}}=\left( \dfrac{-1}{3} \right)\left( {{\left( 3-4x-{{x}^{2}} \right)}^{\dfrac{3}{2}}} \right)+{{c}_{1}}-------------(1)$
Now we have to evaluate ${{I}_{2}}$, we can write
${{I}_{2}}=\int{\sqrt{3-4x-{{x}^{2}}}}dx$
Here we make the terms in square root as the difference of two square, so, we can write
$\begin{align}
& {{I}_{2}}=\int{\sqrt{7-\left( 4x+{{x}^{2}}+4 \right)}}dx \\
& \Rightarrow {{I}_{2}}=\int{\sqrt{{{\left( \sqrt{7} \right)}^{2}}-{{\left( x+2 \right)}^{2}}}}dx \\
\end{align}$
Now we put here
$\begin{align}
& z=x+2 \\
& dz=dx \\
\end{align}$
Hence, we can write
${{I}_{2}}=\int{\sqrt{{{\left( \sqrt{7} \right)}^{2}}-{{\left( z \right)}^{2}}}}dx$
As we know that
$\int{\sqrt{{{a}^{2}}-{{x}^{2}}}}=\dfrac{x}{2}\sqrt{{{a}^{2}}-{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}{{\sin }^{-1}}\dfrac{x}{a}+C$
Using the above formula, we can write
\[\begin{align}
& {{I}_{2}}=\int{\sqrt{{{\left( \sqrt{7} \right)}^{2}}-{{\left( z \right)}^{2}}}}dx \\
& \Rightarrow {{I}_{2}}=\dfrac{z}{2}\sqrt{{{\left( \sqrt{7} \right)}^{2}}-{{z}^{2}}}+\dfrac{{{\left( \sqrt{7} \right)}^{2}}}{2}{{\sin }^{-1}}\dfrac{z}{\sqrt{7}}+{{c}_{2}} \\
\end{align}\]
Now putting the value of $z=x+2$, we can write
\[\begin{align}
& {{I}_{2}}=\int{\sqrt{{{\left( \sqrt{7} \right)}^{2}}-{{\left( z \right)}^{2}}}}dx \\
& \Rightarrow {{I}_{2}}=\dfrac{x+2}{2}\sqrt{{{\left( \sqrt{7} \right)}^{2}}-{{\left( x+2 \right)}^{2}}}+\dfrac{{{\left( \sqrt{7} \right)}^{2}}}{2}{{\sin }^{-1}}\dfrac{x+2}{\sqrt{7}}+{{c}_{2}} \\
& \Rightarrow {{I}_{2}}=\dfrac{x+2}{2}\sqrt{3-4x-{{x}^{2}}}+\dfrac{7}{2}{{\sin }^{-1}}\dfrac{x+2}{\sqrt{7}}+{{c}_{2}}--------(2) \\
\end{align}\]
Now as we have
$I={{I}_{1}}+{{I}_{2}}$
So, adding (1) and (2) we can write
\[\begin{align}
& I=-\dfrac{1}{3}{{\left( 3-4x-{{x}^{2}} \right)}^{\dfrac{3}{2}}}+\dfrac{x+2}{2}\sqrt{3-4x-{{x}^{2}}}+\dfrac{7}{2}{{\sin }^{-1}}\dfrac{x+2}{\sqrt{7}}+{{c}_{1}}+{{c}_{2}} \\
& I=-\dfrac{1}{3}{{\left( 3-4x-{{x}^{2}} \right)}^{\dfrac{3}{2}}}+\dfrac{x+2}{2}\sqrt{3-4x-{{x}^{2}}}+\dfrac{7}{2}{{\sin }^{-1}}\dfrac{x+2}{\sqrt{7}}+K \\
\end{align}\]
Here K is the combined integration constant.
Note:
If we have to evaluate the integral of type $\int{f\{\phi (x)\}{\phi }'(x)dx}$ then we have to put $\phi (x)=t\text{ and }{\phi }'(x)dx=dt$. With this substitution, the integrand becomes easily integrable.
Complete step by step answer:
We have to integrate $\int{(x+3)\sqrt{3-4x-{{x}^{2}}}}dx$let us suppose this is $I$, so we can write
$I=\int{(x+3)\sqrt{3-4x-{{x}^{2}}}}dx$
Now we assume that
$x+3=A.\dfrac{d}{dx}\left( 3-4x-{{x}^{2}} \right)+B$
As we now, that $\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}},\dfrac{dc}{dx}=0$, where $c$is a constant, so we can write further
$\begin{align}
& x+3=A(-4-2x)+B \\
& \Rightarrow x+3=-4A-2Ax+B \\
& \Rightarrow x+3=\left( -4A+B \right)+\left( -2Ax \right) \\
\end{align}$
Now in order to find the value of $A\text{ and }B$, we have to compare, so on comparing, we have
$\begin{align}
& -2A=1 \\
& \Rightarrow A=-\dfrac{1}{2} \\
\end{align}$
And
$-4A+B=3$
Putting the value of $\Rightarrow A=-\dfrac{1}{2}$, we get
$\begin{align}
& -4\left( \dfrac{-1}{2} \right)+B=3 \\
& \Rightarrow B=3-2 \\
& \Rightarrow B=1 \\
\end{align}$
So, we can write
$x+3=\left( \dfrac{-1}{2} \right)\left( -4-2x \right)+1$
Now we can write the given integration as
$\begin{align}
& I=\int{\left\{ -\dfrac{1}{2}(-4-2x)+1 \right\}\sqrt{3-4x-{{x}^{2}}}}dx \\
& I=\int{\left\{ -\dfrac{1}{2}(-4-2x) \right\}\sqrt{3-4x-{{x}^{2}}}}dx+\int{\sqrt{3-4x-{{x}^{2}}}}dx \\
\end{align}$
Here we get the given integration as the sum of two integration, so, we can write
$I={{I}_{1}}+{{I}_{2}}$
Here ${{I}_{1}}=\int{\left\{ -\dfrac{1}{2}(-4-2x) \right\}\sqrt{3-4x-{{x}^{2}}}}dx$
And ${{I}_{2}}=\int{\sqrt{3-4x-{{x}^{2}}}}dx$
Now we calculate both integrands separately, first we calculate
${{I}_{1}}=\int{\left\{ -\dfrac{1}{2}(-4-2x) \right\}\sqrt{3-4x-{{x}^{2}}}}dx$
Let $3-4x-{{x}^{2}}=t$
Differentiating both sides, we can write
$\left( -4-2x \right)dx=dt$
Now substituting the above, we can write
${{I}_{1}}=\dfrac{-1}{2}\int{\sqrt{t}}dt$
As we know that $\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}+c$
We can write
$\begin{align}
& {{I}_{1}}=\dfrac{-1}{2}\left( \dfrac{{{t}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1} \right) \\
& {{I}_{1}}=\left( \dfrac{-1}{2} \right)\left( {{t}^{\dfrac{3}{2}}} \right)\left( \dfrac{2}{3} \right) \\
& {{I}_{1}}=\left( \dfrac{-1}{3} \right)\left( {{t}^{\dfrac{3}{2}}} \right) \\
\end{align}$
Now we substitute the assumed value of $t$we can write
${{I}_{1}}=\left( \dfrac{-1}{3} \right)\left( {{\left( 3-4x-{{x}^{2}} \right)}^{\dfrac{3}{2}}} \right)+{{c}_{1}}-------------(1)$
Now we have to evaluate ${{I}_{2}}$, we can write
${{I}_{2}}=\int{\sqrt{3-4x-{{x}^{2}}}}dx$
Here we make the terms in square root as the difference of two square, so, we can write
$\begin{align}
& {{I}_{2}}=\int{\sqrt{7-\left( 4x+{{x}^{2}}+4 \right)}}dx \\
& \Rightarrow {{I}_{2}}=\int{\sqrt{{{\left( \sqrt{7} \right)}^{2}}-{{\left( x+2 \right)}^{2}}}}dx \\
\end{align}$
Now we put here
$\begin{align}
& z=x+2 \\
& dz=dx \\
\end{align}$
Hence, we can write
${{I}_{2}}=\int{\sqrt{{{\left( \sqrt{7} \right)}^{2}}-{{\left( z \right)}^{2}}}}dx$
As we know that
$\int{\sqrt{{{a}^{2}}-{{x}^{2}}}}=\dfrac{x}{2}\sqrt{{{a}^{2}}-{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}{{\sin }^{-1}}\dfrac{x}{a}+C$
Using the above formula, we can write
\[\begin{align}
& {{I}_{2}}=\int{\sqrt{{{\left( \sqrt{7} \right)}^{2}}-{{\left( z \right)}^{2}}}}dx \\
& \Rightarrow {{I}_{2}}=\dfrac{z}{2}\sqrt{{{\left( \sqrt{7} \right)}^{2}}-{{z}^{2}}}+\dfrac{{{\left( \sqrt{7} \right)}^{2}}}{2}{{\sin }^{-1}}\dfrac{z}{\sqrt{7}}+{{c}_{2}} \\
\end{align}\]
Now putting the value of $z=x+2$, we can write
\[\begin{align}
& {{I}_{2}}=\int{\sqrt{{{\left( \sqrt{7} \right)}^{2}}-{{\left( z \right)}^{2}}}}dx \\
& \Rightarrow {{I}_{2}}=\dfrac{x+2}{2}\sqrt{{{\left( \sqrt{7} \right)}^{2}}-{{\left( x+2 \right)}^{2}}}+\dfrac{{{\left( \sqrt{7} \right)}^{2}}}{2}{{\sin }^{-1}}\dfrac{x+2}{\sqrt{7}}+{{c}_{2}} \\
& \Rightarrow {{I}_{2}}=\dfrac{x+2}{2}\sqrt{3-4x-{{x}^{2}}}+\dfrac{7}{2}{{\sin }^{-1}}\dfrac{x+2}{\sqrt{7}}+{{c}_{2}}--------(2) \\
\end{align}\]
Now as we have
$I={{I}_{1}}+{{I}_{2}}$
So, adding (1) and (2) we can write
\[\begin{align}
& I=-\dfrac{1}{3}{{\left( 3-4x-{{x}^{2}} \right)}^{\dfrac{3}{2}}}+\dfrac{x+2}{2}\sqrt{3-4x-{{x}^{2}}}+\dfrac{7}{2}{{\sin }^{-1}}\dfrac{x+2}{\sqrt{7}}+{{c}_{1}}+{{c}_{2}} \\
& I=-\dfrac{1}{3}{{\left( 3-4x-{{x}^{2}} \right)}^{\dfrac{3}{2}}}+\dfrac{x+2}{2}\sqrt{3-4x-{{x}^{2}}}+\dfrac{7}{2}{{\sin }^{-1}}\dfrac{x+2}{\sqrt{7}}+K \\
\end{align}\]
Here K is the combined integration constant.
Note:
If we have to evaluate the integral of type $\int{f\{\phi (x)\}{\phi }'(x)dx}$ then we have to put $\phi (x)=t\text{ and }{\phi }'(x)dx=dt$. With this substitution, the integrand becomes easily integrable.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
