
How to find \[\dfrac{{dy}}{{dx}}\] if \[y = \ln \left( {8{x^2} + 9{y^2}} \right)\]
Answer
445.8k+ views
Hint:
Here, we have to find the derivative of the given function. We will use the derivative formula to find the derivative of the logarithmic function. Then we will find the derivative of the algebraic function by using the concept of Implicit differentiation. We will simplify the equation further to get the required answer.
Formula Used:
We will use the following formulas:
1) Derivative formula: \[\dfrac{d}{{dx}}\left( {\ln x} \right) = \dfrac{1}{x}\]
2) Derivative formula: \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step by step solution:
We are given with a function \[y = \ln \left( {8{x^2} + 9{y^2}} \right)\]
Now, we will find the derivative of the given function.
Now, we will find the derivative of the logarithmic function followed by the derivative of the algebraic function simultaneously.
Using the derivative formula \[\dfrac{d}{{dx}}\left( {\ln x} \right) = \dfrac{1}{x}\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{8{x^2} + 9{y^2}}}\left[ {\dfrac{d}{{dx}}\left( {8{x^2} + 9{y^2}} \right)} \right]\]
Simplifying the equation, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{8{x^2} + 9{y^2}}}\dfrac{d}{{dx}}\left( {8{x^2}} \right) + \dfrac{1}{{8{x^2} + 9{y^2}}}\dfrac{d}{{dx}}\left( {9{y^2}} \right)\]
Now, by using the derivative formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{8 \cdot 2x}}{{8{x^2} + 9{y^2}}} + \dfrac{{9 \cdot 2y}}{{8{x^2} + 9{y^2}}}\dfrac{{dy}}{{dx}}\]
Multiplying the terms, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{16x}}{{8{x^2} + 9{y^2}}} + \dfrac{{18y}}{{8{x^2} + 9{y^2}}}\dfrac{{dy}}{{dx}}\]
Rewriting the equation, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} - \dfrac{{18y}}{{8{x^2} + 9{y^2}}}\dfrac{{dy}}{{dx}} = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}\]
Now, by taking out the common factor, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}}\left( {1 - \dfrac{{18y}}{{8{x^2} + 9{y^2}}}} \right) = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}\]
Taking LCM of the terms inside the bracket on the RHS, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}}\left( {1 \times \dfrac{{8{x^2} + 9{y^2}}}{{8{x^2} + 9{y^2}}} - \dfrac{{18y}}{{8{x^2} + 9{y^2}}}} \right) = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}}\left( {\dfrac{{8{x^2} + 9{y^2} - 18y}}{{8{x^2} + 9{y^2}}}} \right) = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}\]
Now, by rewriting the terms, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{16x}}{{8{x^2} + 9{y^2}}}}}{{\left( {\dfrac{{8{x^2} + 9{y^2} - 18y}}{{8{x^2} + 9{y^2}}}} \right)}}\]
Cancelling out the same terms of the fractions, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{16x}}{{8{x^2} + 9{y^2} - 18y}}\]
Therefore, the derivative \[\dfrac{{dy}}{{dx}}\] of the function \[y = \ln \left( {8{x^2} + 9{y^2}} \right)\] is \[\dfrac{{16x}}{{8{x^2} + 9{y^2} - 18y}}\].
Note:
We know that Differentiation is a method of finding the derivative of a function and finding the rate of change of function with respect to one variable. But here, we are using the concept of Implicit differentiation. Implicit Differentiation is a process of finding the derivative of a function when the function has both the terms\[x\] and\[y\]. Implicit Differentiation is similar to the process of differentiation and uses the same formula used for differentiation.
Here, we have to find the derivative of the given function. We will use the derivative formula to find the derivative of the logarithmic function. Then we will find the derivative of the algebraic function by using the concept of Implicit differentiation. We will simplify the equation further to get the required answer.
Formula Used:
We will use the following formulas:
1) Derivative formula: \[\dfrac{d}{{dx}}\left( {\ln x} \right) = \dfrac{1}{x}\]
2) Derivative formula: \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step by step solution:
We are given with a function \[y = \ln \left( {8{x^2} + 9{y^2}} \right)\]
Now, we will find the derivative of the given function.
Now, we will find the derivative of the logarithmic function followed by the derivative of the algebraic function simultaneously.
Using the derivative formula \[\dfrac{d}{{dx}}\left( {\ln x} \right) = \dfrac{1}{x}\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{8{x^2} + 9{y^2}}}\left[ {\dfrac{d}{{dx}}\left( {8{x^2} + 9{y^2}} \right)} \right]\]
Simplifying the equation, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{8{x^2} + 9{y^2}}}\dfrac{d}{{dx}}\left( {8{x^2}} \right) + \dfrac{1}{{8{x^2} + 9{y^2}}}\dfrac{d}{{dx}}\left( {9{y^2}} \right)\]
Now, by using the derivative formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{8 \cdot 2x}}{{8{x^2} + 9{y^2}}} + \dfrac{{9 \cdot 2y}}{{8{x^2} + 9{y^2}}}\dfrac{{dy}}{{dx}}\]
Multiplying the terms, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{16x}}{{8{x^2} + 9{y^2}}} + \dfrac{{18y}}{{8{x^2} + 9{y^2}}}\dfrac{{dy}}{{dx}}\]
Rewriting the equation, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} - \dfrac{{18y}}{{8{x^2} + 9{y^2}}}\dfrac{{dy}}{{dx}} = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}\]
Now, by taking out the common factor, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}}\left( {1 - \dfrac{{18y}}{{8{x^2} + 9{y^2}}}} \right) = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}\]
Taking LCM of the terms inside the bracket on the RHS, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}}\left( {1 \times \dfrac{{8{x^2} + 9{y^2}}}{{8{x^2} + 9{y^2}}} - \dfrac{{18y}}{{8{x^2} + 9{y^2}}}} \right) = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}}\left( {\dfrac{{8{x^2} + 9{y^2} - 18y}}{{8{x^2} + 9{y^2}}}} \right) = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}\]
Now, by rewriting the terms, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{16x}}{{8{x^2} + 9{y^2}}}}}{{\left( {\dfrac{{8{x^2} + 9{y^2} - 18y}}{{8{x^2} + 9{y^2}}}} \right)}}\]
Cancelling out the same terms of the fractions, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{16x}}{{8{x^2} + 9{y^2} - 18y}}\]
Therefore, the derivative \[\dfrac{{dy}}{{dx}}\] of the function \[y = \ln \left( {8{x^2} + 9{y^2}} \right)\] is \[\dfrac{{16x}}{{8{x^2} + 9{y^2} - 18y}}\].
Note:
We know that Differentiation is a method of finding the derivative of a function and finding the rate of change of function with respect to one variable. But here, we are using the concept of Implicit differentiation. Implicit Differentiation is a process of finding the derivative of a function when the function has both the terms\[x\] and\[y\]. Implicit Differentiation is similar to the process of differentiation and uses the same formula used for differentiation.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
