Answer
Verified
495k+ views
Here, we will solve for the roots by using the polar form of a complex number.
Since, $
{\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( {64} \right)^{\dfrac{1}{4}}}{\left( {{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( {{2^6}} \right)^{\dfrac{1}{4}}}\left( a \right) = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{6}{4}}}\left( a \right) \\
\Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right){\text{ }} \to {\text{(1)}} \\
$
As we know that $\left( { - 1} \right)$ can be represented in polar form as $ - 1 = \cos \pi + i\left( {\sin \pi } \right)$
Substituting the above value of $\left( { - 1} \right)$ in equation (1), we get
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left[ {\cos \pi + i\left( {\sin \pi } \right)} \right]^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)$
Also, we know that $\cos \theta = cos\left( {2n\pi + \theta } \right)$ and $\sin \theta = \sin \left( {2n\pi + \theta } \right)$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right){\left[ {\cos \left( {2n\pi + \pi } \right) + i\left( {\sin \left( {2n\pi + \pi } \right)} \right)} \right]^{\dfrac{1}{4}}}$
Using identity ${\left( {\cos \theta + i\sin \theta } \right)^n} = {\left( {{e^{i\theta }}} \right)^n} = {e^{i\left( {n\theta } \right)}} = \cos \left( {n\theta } \right) + i\sin \left( {n\theta } \right)$, we can write
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2n\pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2n\pi + \pi } \right)}}{4}} \right]} \right)} \right]$ where $n = 0,1,2,..$
The required roots can be obtained by putting the different values of $n$
For $n = 0$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 0 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 0 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{\pi }{4}} \right) + i\left( {\sin \left( {\dfrac{\pi }{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{\pi }{4}} \right) = \sin \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( {\dfrac{1}{{\sqrt 2 }}} \right) + i\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 + i}}{{\sqrt 2 }}} \right] = 2a\left( {1 + i} \right)$
For $n = 1$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 1 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 1 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{3\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{3\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{3\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{3\pi }}{4}} \right) = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( { - \dfrac{1}{{\sqrt 2 }}} \right) + i\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{ - 1 + i}}{{\sqrt 2 }}} \right] = - 2a\left( {1 - i} \right)$
For $n = 2$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 2 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 2 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{5\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{5\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( { - \dfrac{1}{{\sqrt 2 }}} \right) + i\left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right] = - \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 + i}}{{\sqrt 2 }}} \right] = - 2a\left( {1 + i} \right)$
For $n = 3$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 3 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 3 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{7\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{7\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{5\pi }}{4}} \right) = \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( {\dfrac{1}{{\sqrt 2 }}} \right) + i\left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 - i}}{{\sqrt 2 }}} \right] = 2a\left( {1 - i} \right)$
For rest of the values of $n$, the roots will repeat so the final four required roots of ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}}$ where $\left( {a \in R} \right)$ can be collectively represented as $ \pm 2a\left( {1 \pm i} \right)$.
Note- In these type of problems, the given expression is represented in polar form of a complex number so that the power of that expression can be easily solved by using the formula for ${e^{i\left( {n\theta } \right)}}$ and further various roots can be obtained by putting different values of $n$.
Since, $
{\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( {64} \right)^{\dfrac{1}{4}}}{\left( {{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( {{2^6}} \right)^{\dfrac{1}{4}}}\left( a \right) = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{6}{4}}}\left( a \right) \\
\Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right){\text{ }} \to {\text{(1)}} \\
$
As we know that $\left( { - 1} \right)$ can be represented in polar form as $ - 1 = \cos \pi + i\left( {\sin \pi } \right)$
Substituting the above value of $\left( { - 1} \right)$ in equation (1), we get
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left[ {\cos \pi + i\left( {\sin \pi } \right)} \right]^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)$
Also, we know that $\cos \theta = cos\left( {2n\pi + \theta } \right)$ and $\sin \theta = \sin \left( {2n\pi + \theta } \right)$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right){\left[ {\cos \left( {2n\pi + \pi } \right) + i\left( {\sin \left( {2n\pi + \pi } \right)} \right)} \right]^{\dfrac{1}{4}}}$
Using identity ${\left( {\cos \theta + i\sin \theta } \right)^n} = {\left( {{e^{i\theta }}} \right)^n} = {e^{i\left( {n\theta } \right)}} = \cos \left( {n\theta } \right) + i\sin \left( {n\theta } \right)$, we can write
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2n\pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2n\pi + \pi } \right)}}{4}} \right]} \right)} \right]$ where $n = 0,1,2,..$
The required roots can be obtained by putting the different values of $n$
For $n = 0$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 0 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 0 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{\pi }{4}} \right) + i\left( {\sin \left( {\dfrac{\pi }{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{\pi }{4}} \right) = \sin \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( {\dfrac{1}{{\sqrt 2 }}} \right) + i\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 + i}}{{\sqrt 2 }}} \right] = 2a\left( {1 + i} \right)$
For $n = 1$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 1 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 1 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{3\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{3\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{3\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{3\pi }}{4}} \right) = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( { - \dfrac{1}{{\sqrt 2 }}} \right) + i\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{ - 1 + i}}{{\sqrt 2 }}} \right] = - 2a\left( {1 - i} \right)$
For $n = 2$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 2 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 2 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{5\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{5\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( { - \dfrac{1}{{\sqrt 2 }}} \right) + i\left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right] = - \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 + i}}{{\sqrt 2 }}} \right] = - 2a\left( {1 + i} \right)$
For $n = 3$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 3 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 3 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{7\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{7\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{5\pi }}{4}} \right) = \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( {\dfrac{1}{{\sqrt 2 }}} \right) + i\left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 - i}}{{\sqrt 2 }}} \right] = 2a\left( {1 - i} \right)$
For rest of the values of $n$, the roots will repeat so the final four required roots of ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}}$ where $\left( {a \in R} \right)$ can be collectively represented as $ \pm 2a\left( {1 \pm i} \right)$.
Note- In these type of problems, the given expression is represented in polar form of a complex number so that the power of that expression can be easily solved by using the formula for ${e^{i\left( {n\theta } \right)}}$ and further various roots can be obtained by putting different values of $n$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE