
Find all the values of the given root : ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}}$ where $\left( {a \in R} \right)$
Answer
606.6k+ views
Here, we will solve for the roots by using the polar form of a complex number.
Since, $
{\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( {64} \right)^{\dfrac{1}{4}}}{\left( {{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( {{2^6}} \right)^{\dfrac{1}{4}}}\left( a \right) = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{6}{4}}}\left( a \right) \\
\Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right){\text{ }} \to {\text{(1)}} \\
$
As we know that $\left( { - 1} \right)$ can be represented in polar form as $ - 1 = \cos \pi + i\left( {\sin \pi } \right)$
Substituting the above value of $\left( { - 1} \right)$ in equation (1), we get
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left[ {\cos \pi + i\left( {\sin \pi } \right)} \right]^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)$
Also, we know that $\cos \theta = cos\left( {2n\pi + \theta } \right)$ and $\sin \theta = \sin \left( {2n\pi + \theta } \right)$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right){\left[ {\cos \left( {2n\pi + \pi } \right) + i\left( {\sin \left( {2n\pi + \pi } \right)} \right)} \right]^{\dfrac{1}{4}}}$
Using identity ${\left( {\cos \theta + i\sin \theta } \right)^n} = {\left( {{e^{i\theta }}} \right)^n} = {e^{i\left( {n\theta } \right)}} = \cos \left( {n\theta } \right) + i\sin \left( {n\theta } \right)$, we can write
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2n\pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2n\pi + \pi } \right)}}{4}} \right]} \right)} \right]$ where $n = 0,1,2,..$
The required roots can be obtained by putting the different values of $n$
For $n = 0$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 0 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 0 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{\pi }{4}} \right) + i\left( {\sin \left( {\dfrac{\pi }{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{\pi }{4}} \right) = \sin \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( {\dfrac{1}{{\sqrt 2 }}} \right) + i\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 + i}}{{\sqrt 2 }}} \right] = 2a\left( {1 + i} \right)$
For $n = 1$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 1 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 1 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{3\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{3\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{3\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{3\pi }}{4}} \right) = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( { - \dfrac{1}{{\sqrt 2 }}} \right) + i\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{ - 1 + i}}{{\sqrt 2 }}} \right] = - 2a\left( {1 - i} \right)$
For $n = 2$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 2 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 2 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{5\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{5\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( { - \dfrac{1}{{\sqrt 2 }}} \right) + i\left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right] = - \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 + i}}{{\sqrt 2 }}} \right] = - 2a\left( {1 + i} \right)$
For $n = 3$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 3 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 3 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{7\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{7\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{5\pi }}{4}} \right) = \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( {\dfrac{1}{{\sqrt 2 }}} \right) + i\left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 - i}}{{\sqrt 2 }}} \right] = 2a\left( {1 - i} \right)$
For rest of the values of $n$, the roots will repeat so the final four required roots of ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}}$ where $\left( {a \in R} \right)$ can be collectively represented as $ \pm 2a\left( {1 \pm i} \right)$.
Note- In these type of problems, the given expression is represented in polar form of a complex number so that the power of that expression can be easily solved by using the formula for ${e^{i\left( {n\theta } \right)}}$ and further various roots can be obtained by putting different values of $n$.
Since, $
{\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( {64} \right)^{\dfrac{1}{4}}}{\left( {{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( {{2^6}} \right)^{\dfrac{1}{4}}}\left( a \right) = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{6}{4}}}\left( a \right) \\
\Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right){\text{ }} \to {\text{(1)}} \\
$
As we know that $\left( { - 1} \right)$ can be represented in polar form as $ - 1 = \cos \pi + i\left( {\sin \pi } \right)$
Substituting the above value of $\left( { - 1} \right)$ in equation (1), we get
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left[ {\cos \pi + i\left( {\sin \pi } \right)} \right]^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)$
Also, we know that $\cos \theta = cos\left( {2n\pi + \theta } \right)$ and $\sin \theta = \sin \left( {2n\pi + \theta } \right)$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right){\left[ {\cos \left( {2n\pi + \pi } \right) + i\left( {\sin \left( {2n\pi + \pi } \right)} \right)} \right]^{\dfrac{1}{4}}}$
Using identity ${\left( {\cos \theta + i\sin \theta } \right)^n} = {\left( {{e^{i\theta }}} \right)^n} = {e^{i\left( {n\theta } \right)}} = \cos \left( {n\theta } \right) + i\sin \left( {n\theta } \right)$, we can write
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2n\pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2n\pi + \pi } \right)}}{4}} \right]} \right)} \right]$ where $n = 0,1,2,..$
The required roots can be obtained by putting the different values of $n$
For $n = 0$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 0 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 0 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{\pi }{4}} \right) + i\left( {\sin \left( {\dfrac{\pi }{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{\pi }{4}} \right) = \sin \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( {\dfrac{1}{{\sqrt 2 }}} \right) + i\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 + i}}{{\sqrt 2 }}} \right] = 2a\left( {1 + i} \right)$
For $n = 1$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 1 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 1 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{3\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{3\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{3\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{3\pi }}{4}} \right) = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( { - \dfrac{1}{{\sqrt 2 }}} \right) + i\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{ - 1 + i}}{{\sqrt 2 }}} \right] = - 2a\left( {1 - i} \right)$
For $n = 2$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 2 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 2 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{5\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{5\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( { - \dfrac{1}{{\sqrt 2 }}} \right) + i\left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right] = - \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 + i}}{{\sqrt 2 }}} \right] = - 2a\left( {1 + i} \right)$
For $n = 3$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 3 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 3 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{7\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{7\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{5\pi }}{4}} \right) = \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( {\dfrac{1}{{\sqrt 2 }}} \right) + i\left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 - i}}{{\sqrt 2 }}} \right] = 2a\left( {1 - i} \right)$
For rest of the values of $n$, the roots will repeat so the final four required roots of ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}}$ where $\left( {a \in R} \right)$ can be collectively represented as $ \pm 2a\left( {1 \pm i} \right)$.
Note- In these type of problems, the given expression is represented in polar form of a complex number so that the power of that expression can be easily solved by using the formula for ${e^{i\left( {n\theta } \right)}}$ and further various roots can be obtained by putting different values of $n$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

