Find all the values of the given root : ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}}$ where $\left( {a \in R} \right)$
Last updated date: 16th Mar 2023
•
Total views: 307.2k
•
Views today: 8.88k
Answer
307.2k+ views
Here, we will solve for the roots by using the polar form of a complex number.
Since, $
{\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( {64} \right)^{\dfrac{1}{4}}}{\left( {{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( {{2^6}} \right)^{\dfrac{1}{4}}}\left( a \right) = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{6}{4}}}\left( a \right) \\
\Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right){\text{ }} \to {\text{(1)}} \\
$
As we know that $\left( { - 1} \right)$ can be represented in polar form as $ - 1 = \cos \pi + i\left( {\sin \pi } \right)$
Substituting the above value of $\left( { - 1} \right)$ in equation (1), we get
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left[ {\cos \pi + i\left( {\sin \pi } \right)} \right]^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)$
Also, we know that $\cos \theta = cos\left( {2n\pi + \theta } \right)$ and $\sin \theta = \sin \left( {2n\pi + \theta } \right)$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right){\left[ {\cos \left( {2n\pi + \pi } \right) + i\left( {\sin \left( {2n\pi + \pi } \right)} \right)} \right]^{\dfrac{1}{4}}}$
Using identity ${\left( {\cos \theta + i\sin \theta } \right)^n} = {\left( {{e^{i\theta }}} \right)^n} = {e^{i\left( {n\theta } \right)}} = \cos \left( {n\theta } \right) + i\sin \left( {n\theta } \right)$, we can write
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2n\pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2n\pi + \pi } \right)}}{4}} \right]} \right)} \right]$ where $n = 0,1,2,..$
The required roots can be obtained by putting the different values of $n$
For $n = 0$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 0 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 0 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{\pi }{4}} \right) + i\left( {\sin \left( {\dfrac{\pi }{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{\pi }{4}} \right) = \sin \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( {\dfrac{1}{{\sqrt 2 }}} \right) + i\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 + i}}{{\sqrt 2 }}} \right] = 2a\left( {1 + i} \right)$
For $n = 1$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 1 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 1 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{3\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{3\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{3\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{3\pi }}{4}} \right) = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( { - \dfrac{1}{{\sqrt 2 }}} \right) + i\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{ - 1 + i}}{{\sqrt 2 }}} \right] = - 2a\left( {1 - i} \right)$
For $n = 2$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 2 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 2 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{5\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{5\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( { - \dfrac{1}{{\sqrt 2 }}} \right) + i\left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right] = - \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 + i}}{{\sqrt 2 }}} \right] = - 2a\left( {1 + i} \right)$
For $n = 3$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 3 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 3 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{7\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{7\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{5\pi }}{4}} \right) = \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( {\dfrac{1}{{\sqrt 2 }}} \right) + i\left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 - i}}{{\sqrt 2 }}} \right] = 2a\left( {1 - i} \right)$
For rest of the values of $n$, the roots will repeat so the final four required roots of ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}}$ where $\left( {a \in R} \right)$ can be collectively represented as $ \pm 2a\left( {1 \pm i} \right)$.
Note- In these type of problems, the given expression is represented in polar form of a complex number so that the power of that expression can be easily solved by using the formula for ${e^{i\left( {n\theta } \right)}}$ and further various roots can be obtained by putting different values of $n$.
Since, $
{\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( {64} \right)^{\dfrac{1}{4}}}{\left( {{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( {{2^6}} \right)^{\dfrac{1}{4}}}\left( a \right) = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{6}{4}}}\left( a \right) \\
\Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( { - 1} \right)^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right){\text{ }} \to {\text{(1)}} \\
$
As we know that $\left( { - 1} \right)$ can be represented in polar form as $ - 1 = \cos \pi + i\left( {\sin \pi } \right)$
Substituting the above value of $\left( { - 1} \right)$ in equation (1), we get
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left[ {\cos \pi + i\left( {\sin \pi } \right)} \right]^{\dfrac{1}{4}}}{\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)$
Also, we know that $\cos \theta = cos\left( {2n\pi + \theta } \right)$ and $\sin \theta = \sin \left( {2n\pi + \theta } \right)$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right){\left[ {\cos \left( {2n\pi + \pi } \right) + i\left( {\sin \left( {2n\pi + \pi } \right)} \right)} \right]^{\dfrac{1}{4}}}$
Using identity ${\left( {\cos \theta + i\sin \theta } \right)^n} = {\left( {{e^{i\theta }}} \right)^n} = {e^{i\left( {n\theta } \right)}} = \cos \left( {n\theta } \right) + i\sin \left( {n\theta } \right)$, we can write
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2n\pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2n\pi + \pi } \right)}}{4}} \right]} \right)} \right]$ where $n = 0,1,2,..$
The required roots can be obtained by putting the different values of $n$
For $n = 0$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 0 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 0 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{\pi }{4}} \right) + i\left( {\sin \left( {\dfrac{\pi }{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{\pi }{4}} \right) = \sin \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( {\dfrac{1}{{\sqrt 2 }}} \right) + i\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 + i}}{{\sqrt 2 }}} \right] = 2a\left( {1 + i} \right)$
For $n = 1$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 1 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 1 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{3\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{3\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{3\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{3\pi }}{4}} \right) = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( { - \dfrac{1}{{\sqrt 2 }}} \right) + i\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{ - 1 + i}}{{\sqrt 2 }}} \right] = - 2a\left( {1 - i} \right)$
For $n = 2$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 2 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 2 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{5\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{5\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( { - \dfrac{1}{{\sqrt 2 }}} \right) + i\left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right] = - \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 + i}}{{\sqrt 2 }}} \right] = - 2a\left( {1 + i} \right)$
For $n = 3$, ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left[ {\dfrac{{\left( {2 \times 3 \times \pi + \pi } \right)}}{4}} \right] + i\left( {\sin \left[ {\dfrac{{\left( {2 \times 3 \times \pi + \pi } \right)}}{4}} \right]} \right)} \right] = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\cos \left( {\dfrac{{7\pi }}{4}} \right) + i\left( {\sin \left( {\dfrac{{7\pi }}{4}} \right)} \right)} \right]$
As, $\cos \left( {\dfrac{{5\pi }}{4}} \right) = \dfrac{1}{{\sqrt 2 }}$ and $\sin \left( {\dfrac{{5\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow {\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}} = {\left( 2 \right)^{\dfrac{3}{2}}}\left( a \right)\left[ {\left( {\dfrac{1}{{\sqrt 2 }}} \right) + i\left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right] = \left( {2\sqrt 2 } \right)\left( a \right)\left[ {\dfrac{{1 - i}}{{\sqrt 2 }}} \right] = 2a\left( {1 - i} \right)$
For rest of the values of $n$, the roots will repeat so the final four required roots of ${\left( { - 64{a^4}} \right)^{\dfrac{1}{4}}}$ where $\left( {a \in R} \right)$ can be collectively represented as $ \pm 2a\left( {1 \pm i} \right)$.
Note- In these type of problems, the given expression is represented in polar form of a complex number so that the power of that expression can be easily solved by using the formula for ${e^{i\left( {n\theta } \right)}}$ and further various roots can be obtained by putting different values of $n$.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
