Answer
Verified
492.6k+ views
Hint: The given question is related to quadratic equations. Try to recall the formulae related to the relation between the coefficients and sum and product of the roots of a quadratic equation.
Complete step-by-step answer:
Before proceeding with the solution, we must know about the relation between the coefficients and sum and product of the roots of the quadratic equation given by \[a{{x}^{2}}+bx+c=0\] .
We know, the roots of the equation \[a{{x}^{2}}+bx+c=0\] are given by the quadratic formula $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ .
Let $\alpha $ and $\beta $ be the roots of the equation. So, $\alpha =\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a}$ and $\beta =\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a}$. The sum of the roots is given as $\alpha +\beta =\left( \dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a} \right)+\left( \dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a} \right)=\dfrac{-2b}{2a}=\dfrac{-b}{a}$ .
So, the sum of the roots is related to the coefficients as $\alpha +\beta =\dfrac{-b}{a}$ .
The product of the roots is given as $\alpha \beta =\left( \dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a} \right)\left( \dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a} \right)=\dfrac{{{b}^{2}}-\left( {{b}^{2}}-4ac \right)}{4{{a}^{2}}}=\dfrac{c}{a}$ .
So, the product of the roots is related to the coefficients as $\alpha \beta =\dfrac{c}{a}$ .
Now, we have \[a{{x}^{2}}+bx+c=0\]. On dividing the equation by $a$ , we get ${{x}^{2}}+\dfrac{b}{a}x+\dfrac{c}{a}=0.....(i)$.
We have $\alpha +\beta =\dfrac{-b}{a}$ and $\alpha \beta =\dfrac{c}{a}$ . So, we can rewrite equation \[(i)\] with coefficients in the form sum and product of roots as ${{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta =0.....(ii)$.
Now, coming to the question , we are given that the sum of the zeroes of a quadratic polynomial is equal to $\dfrac{1}{4}$ and the product of zeroes is equal to $-1$ . So, we can say that if $\alpha $ and $\beta $ is the roots of the equation, then $\alpha +\beta =\dfrac{1}{4}$ and $\alpha \beta =-1$ . Substituting $\alpha +\beta =\dfrac{1}{4}$ and $\alpha \beta =-1$ in equation $(ii)$ , we get ${{x}^{2}}-\dfrac{1}{4}x-1=0$ .
$\Rightarrow 4{{x}^{2}}-x-4=0$
Hence, the quadratic polynomial having sum and product of zeroes as $\dfrac{1}{4}$ and $-1$ , respectively, is given as $4{{x}^{2}}-x-4$ .
Note: The quadratic equation with coefficients in the form sum and product of roots is given as ${{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta =0$ and not ${{x}^{2}}+\left( \alpha +\beta \right)x+\alpha \beta =0$. Students often get confused and make a mistake. Such mistakes should be avoided as they can lead to wrong answers.
Complete step-by-step answer:
Before proceeding with the solution, we must know about the relation between the coefficients and sum and product of the roots of the quadratic equation given by \[a{{x}^{2}}+bx+c=0\] .
We know, the roots of the equation \[a{{x}^{2}}+bx+c=0\] are given by the quadratic formula $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ .
Let $\alpha $ and $\beta $ be the roots of the equation. So, $\alpha =\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a}$ and $\beta =\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a}$. The sum of the roots is given as $\alpha +\beta =\left( \dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a} \right)+\left( \dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a} \right)=\dfrac{-2b}{2a}=\dfrac{-b}{a}$ .
So, the sum of the roots is related to the coefficients as $\alpha +\beta =\dfrac{-b}{a}$ .
The product of the roots is given as $\alpha \beta =\left( \dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a} \right)\left( \dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a} \right)=\dfrac{{{b}^{2}}-\left( {{b}^{2}}-4ac \right)}{4{{a}^{2}}}=\dfrac{c}{a}$ .
So, the product of the roots is related to the coefficients as $\alpha \beta =\dfrac{c}{a}$ .
Now, we have \[a{{x}^{2}}+bx+c=0\]. On dividing the equation by $a$ , we get ${{x}^{2}}+\dfrac{b}{a}x+\dfrac{c}{a}=0.....(i)$.
We have $\alpha +\beta =\dfrac{-b}{a}$ and $\alpha \beta =\dfrac{c}{a}$ . So, we can rewrite equation \[(i)\] with coefficients in the form sum and product of roots as ${{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta =0.....(ii)$.
Now, coming to the question , we are given that the sum of the zeroes of a quadratic polynomial is equal to $\dfrac{1}{4}$ and the product of zeroes is equal to $-1$ . So, we can say that if $\alpha $ and $\beta $ is the roots of the equation, then $\alpha +\beta =\dfrac{1}{4}$ and $\alpha \beta =-1$ . Substituting $\alpha +\beta =\dfrac{1}{4}$ and $\alpha \beta =-1$ in equation $(ii)$ , we get ${{x}^{2}}-\dfrac{1}{4}x-1=0$ .
$\Rightarrow 4{{x}^{2}}-x-4=0$
Hence, the quadratic polynomial having sum and product of zeroes as $\dfrac{1}{4}$ and $-1$ , respectively, is given as $4{{x}^{2}}-x-4$ .
Note: The quadratic equation with coefficients in the form sum and product of roots is given as ${{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta =0$ and not ${{x}^{2}}+\left( \alpha +\beta \right)x+\alpha \beta =0$. Students often get confused and make a mistake. Such mistakes should be avoided as they can lead to wrong answers.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE