
Find a point on x-axis which is equidistant from points (5, 4) and (-2, 3).
\[
{\text{A}}{\text{. }}\left( {2,0} \right) \\
{\text{B}}{\text{. }}\left( { - 2,0} \right) \\
{\text{C}}{\text{. }}\left( {3,0} \right) \\
{\text{D}}{\text{. }}\left( { - 3,0} \right) \\
\]
Answer
620.4k+ views
Hint: Calculate the individual distance from each of the given points to the point on x-axis, both these distances must be equal. Use the formula for distance between two points. Also, the Y-coordinate for any point which lies on x-axis is zero.
Complete step-by-step answer:
Given Data –
Points are (5, 4) and (-2, 3).
Let the point on x-axis be (x, 0).
The formula for calculating the distance (d) between two points $\left( {{{\text{x}}_1},{{\text{y}}_1}} \right)$ and $\left( {{{\text{x}}_{2,}}{{\text{y}}_2}} \right)$ respectively is
${\text{d = }}\sqrt {{{{\text{(}}{{\text{x}}_1}{\text{ - }}{{\text{x}}_2}{\text{)}}}^2} + {{({y_1} - {y_2})}^2}} $.
Let the distance from point (5, 4) to (x, 0) be D1.
\[{\text{D1 = }}\sqrt {{{(5 - x)}^2} + {{(4 - 0)}^2}} \] -> Equation 1.
Let the distance from point (-2, 3) to (x, 0) be D2.
${\text{D2 = }}\sqrt {{{( - 2 - x)}^2} + {{(3 - 0)}^2}} $ -> Equation 2.
Equidistant implies both the distances D1 and D2 are equal;
⟹ Equation 1 = Equation 2
⟹ $\sqrt {{{(5 - {\text{x)}}}^2} + {{(4 - 0)}^2}} = \sqrt {{{( - 2 - {\text{x)}}}^2} + {{(3 - 0)}^2}} $
Squaring on both sides
⟹ \[{\left( {{\text{5 - x}}} \right)^2} + {\left( 4 \right)^2} = {\left( { - 2 - {\text{x}}} \right)^2} + {\left( 3 \right)^2}\]
⟹ ${\text{25 + }}{{\text{x}}^2} - 10{\text{x + 16 = 4 + }}{{\text{x}}^2} + 4{\text{x + 9}}$
⟹ 28 = 14x
⟹ x = 2.
Hence the point is (2, 0) which is Option A.
Note –
In problems like this always find the distance from each of the given points respectively and then equate the distance equations obtained to determine the value of the required point.
Distance from (5, 4) – D1 and (-2, 3) – D2 are obtained and equated and solved in order to determine the point on x-axis which is (2, 0).
Complete step-by-step answer:
Given Data –
Points are (5, 4) and (-2, 3).
Let the point on x-axis be (x, 0).
The formula for calculating the distance (d) between two points $\left( {{{\text{x}}_1},{{\text{y}}_1}} \right)$ and $\left( {{{\text{x}}_{2,}}{{\text{y}}_2}} \right)$ respectively is
${\text{d = }}\sqrt {{{{\text{(}}{{\text{x}}_1}{\text{ - }}{{\text{x}}_2}{\text{)}}}^2} + {{({y_1} - {y_2})}^2}} $.
Let the distance from point (5, 4) to (x, 0) be D1.
\[{\text{D1 = }}\sqrt {{{(5 - x)}^2} + {{(4 - 0)}^2}} \] -> Equation 1.
Let the distance from point (-2, 3) to (x, 0) be D2.
${\text{D2 = }}\sqrt {{{( - 2 - x)}^2} + {{(3 - 0)}^2}} $ -> Equation 2.
Equidistant implies both the distances D1 and D2 are equal;
⟹ Equation 1 = Equation 2
⟹ $\sqrt {{{(5 - {\text{x)}}}^2} + {{(4 - 0)}^2}} = \sqrt {{{( - 2 - {\text{x)}}}^2} + {{(3 - 0)}^2}} $
Squaring on both sides
⟹ \[{\left( {{\text{5 - x}}} \right)^2} + {\left( 4 \right)^2} = {\left( { - 2 - {\text{x}}} \right)^2} + {\left( 3 \right)^2}\]
⟹ ${\text{25 + }}{{\text{x}}^2} - 10{\text{x + 16 = 4 + }}{{\text{x}}^2} + 4{\text{x + 9}}$
⟹ 28 = 14x
⟹ x = 2.
Hence the point is (2, 0) which is Option A.
Note –
In problems like this always find the distance from each of the given points respectively and then equate the distance equations obtained to determine the value of the required point.
Distance from (5, 4) – D1 and (-2, 3) – D2 are obtained and equated and solved in order to determine the point on x-axis which is (2, 0).
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

