
How do you express $\dfrac{6{{x}^{2}}+1}{{{x}^{2}}{{(x-1)}^{2}}}$ in partial fractions?
Answer
548.1k+ views
Hint: In this question we have the given expression in the form of a fraction which has polynomials in its numerator and denominator. We will first write the polynomial expression in the form of partial fractions with variables $A,B,C$ and $D$. We will then substitute values such that individual values of the variables can be found directly or by comparison. We will then write values to get the required solution.
Complete step-by-step solution:
We have the given expression as:
$\Rightarrow \dfrac{6{{x}^{2}}+1}{{{x}^{2}}{{(x-1)}^{2}}}$
Now the expression can be written in the terms of partial fraction as:
$\Rightarrow \dfrac{6{{x}^{2}}+1}{{{x}^{2}}{{(x-1)}^{2}}}=\dfrac{A}{x}+\dfrac{B}{{{x}^{2}}}+\dfrac{C}{\left( x-1 \right)}+\dfrac{D}{{{\left( x-1 \right)}^{2}}}\to (1)$
On taking the lowest common multiple in the left-hand side, we get:
$\Rightarrow \dfrac{6{{x}^{2}}+1}{{{x}^{2}}{{(x-1)}^{2}}}=\dfrac{Ax{{\left( x-1 \right)}^{2}}+B{{\left( x-1 \right)}^{2}}+C{{x}^{2}}\left( x-1 \right)+D{{x}^{2}}}{{{x}^{2}}{{(x-1)}^{2}}}$
Now on cancelling the denominator from both the sides, we get:
$\Rightarrow 6{{x}^{2}}+1=Ax{{\left( x-1 \right)}^{2}}+B{{\left( x-1 \right)}^{2}}+C{{x}^{2}}\left( x-1 \right)+D{{x}^{2}}\to (2)$
Now on substituting $x=0$, we get:
$\Rightarrow 6{{\left( 0 \right)}^{2}}+1=A\left( 0 \right){{\left( 0-1 \right)}^{2}}+B{{\left( 0-1 \right)}^{2}}+C{{\left( 0 \right)}^{2}}\left( 0-1 \right)+D{{\left( 0 \right)}^{2}}$
On simplifying, we get:
$\Rightarrow 1=0+B+0+0$
Hence, $B=1$.
Now on substituting $x=1$, we get:
$\Rightarrow 6{{\left( 1 \right)}^{2}}+1=A\left( 1 \right){{\left( 1-1 \right)}^{2}}+B{{\left( 1-1 \right)}^{2}}+C{{\left( 1 \right)}^{2}}\left( 1-1 \right)+D{{\left( 1 \right)}^{2}}$
On simplifying, we get:
$\Rightarrow 7=0+0+0+D$
Hence, $D=7$.
Now on substituting $B=1$ and $D=7$ in equation $(2)$, we get:
$\Rightarrow 6{{x}^{2}}+1=Ax{{\left( x-1 \right)}^{2}}+1{{\left( x-1 \right)}^{2}}+C{{x}^{2}}\left( x-1 \right)+7{{x}^{2}}$
On expanding the terms on the right-hand side, we get:
$\Rightarrow 6{{x}^{2}}+1=Ax{{\left( {{x}^{2}}-2x+1 \right)}}+{{\left( {{x}^{2}}-2x+1 \right)}}+C{{x}^{2}}\left( x-1 \right)+7{{x}^{2}}$
On simplifying, we get:
$\Rightarrow 6{{x}^{2}}+1=A{{\left( {{x}^{3}}-2{{x}^{2}}+x \right)}}+{{\left( {{x}^{2}}-2x+1 \right)}}+C\left( {{x}^{3}}-{{x}^{2}} \right)+7{{x}^{2}}$
Now on grouping like terms, we get:
$\Rightarrow 6{{x}^{2}}+1=\left( A+C \right){{x}^{3}}+\left( 8-2A-C \right){{x}^{2}}+\left( A-2 \right)x+1$
On comparing the coefficients on both the sides, we get:
$A+C=0\to (3)$
$8-2A-C=6\to (4)$
$A-2=0 \to (5)$
From equation $(5)$, we get:
$A=2$
Substituting $A=2$ in equation $(3)$, we get:
$2+C=0$
Therefore, $C=-2$.
On substituting the values of all the coefficients in equation $(1)$, we get:
$\Rightarrow \dfrac{6{{x}^{2}}+1}{{{x}^{2}}{{(x-1)}^{2}}}=\dfrac{2}{x}+\dfrac{1}{{{x}^{2}}}+\dfrac{-2}{\left( x-1 \right)}+\dfrac{7}{{{\left( x-1 \right)}^{2}}}$, which is the required solution.
Note: It is to be remembered that the partial fraction skeleton is different for different values of the polynomial expressions. The main application of using partial fractions is in integration when the integration has to be performed on complex polynomial fractions which cannot be directly integrated.
Complete step-by-step solution:
We have the given expression as:
$\Rightarrow \dfrac{6{{x}^{2}}+1}{{{x}^{2}}{{(x-1)}^{2}}}$
Now the expression can be written in the terms of partial fraction as:
$\Rightarrow \dfrac{6{{x}^{2}}+1}{{{x}^{2}}{{(x-1)}^{2}}}=\dfrac{A}{x}+\dfrac{B}{{{x}^{2}}}+\dfrac{C}{\left( x-1 \right)}+\dfrac{D}{{{\left( x-1 \right)}^{2}}}\to (1)$
On taking the lowest common multiple in the left-hand side, we get:
$\Rightarrow \dfrac{6{{x}^{2}}+1}{{{x}^{2}}{{(x-1)}^{2}}}=\dfrac{Ax{{\left( x-1 \right)}^{2}}+B{{\left( x-1 \right)}^{2}}+C{{x}^{2}}\left( x-1 \right)+D{{x}^{2}}}{{{x}^{2}}{{(x-1)}^{2}}}$
Now on cancelling the denominator from both the sides, we get:
$\Rightarrow 6{{x}^{2}}+1=Ax{{\left( x-1 \right)}^{2}}+B{{\left( x-1 \right)}^{2}}+C{{x}^{2}}\left( x-1 \right)+D{{x}^{2}}\to (2)$
Now on substituting $x=0$, we get:
$\Rightarrow 6{{\left( 0 \right)}^{2}}+1=A\left( 0 \right){{\left( 0-1 \right)}^{2}}+B{{\left( 0-1 \right)}^{2}}+C{{\left( 0 \right)}^{2}}\left( 0-1 \right)+D{{\left( 0 \right)}^{2}}$
On simplifying, we get:
$\Rightarrow 1=0+B+0+0$
Hence, $B=1$.
Now on substituting $x=1$, we get:
$\Rightarrow 6{{\left( 1 \right)}^{2}}+1=A\left( 1 \right){{\left( 1-1 \right)}^{2}}+B{{\left( 1-1 \right)}^{2}}+C{{\left( 1 \right)}^{2}}\left( 1-1 \right)+D{{\left( 1 \right)}^{2}}$
On simplifying, we get:
$\Rightarrow 7=0+0+0+D$
Hence, $D=7$.
Now on substituting $B=1$ and $D=7$ in equation $(2)$, we get:
$\Rightarrow 6{{x}^{2}}+1=Ax{{\left( x-1 \right)}^{2}}+1{{\left( x-1 \right)}^{2}}+C{{x}^{2}}\left( x-1 \right)+7{{x}^{2}}$
On expanding the terms on the right-hand side, we get:
$\Rightarrow 6{{x}^{2}}+1=Ax{{\left( {{x}^{2}}-2x+1 \right)}}+{{\left( {{x}^{2}}-2x+1 \right)}}+C{{x}^{2}}\left( x-1 \right)+7{{x}^{2}}$
On simplifying, we get:
$\Rightarrow 6{{x}^{2}}+1=A{{\left( {{x}^{3}}-2{{x}^{2}}+x \right)}}+{{\left( {{x}^{2}}-2x+1 \right)}}+C\left( {{x}^{3}}-{{x}^{2}} \right)+7{{x}^{2}}$
Now on grouping like terms, we get:
$\Rightarrow 6{{x}^{2}}+1=\left( A+C \right){{x}^{3}}+\left( 8-2A-C \right){{x}^{2}}+\left( A-2 \right)x+1$
On comparing the coefficients on both the sides, we get:
$A+C=0\to (3)$
$8-2A-C=6\to (4)$
$A-2=0 \to (5)$
From equation $(5)$, we get:
$A=2$
Substituting $A=2$ in equation $(3)$, we get:
$2+C=0$
Therefore, $C=-2$.
On substituting the values of all the coefficients in equation $(1)$, we get:
$\Rightarrow \dfrac{6{{x}^{2}}+1}{{{x}^{2}}{{(x-1)}^{2}}}=\dfrac{2}{x}+\dfrac{1}{{{x}^{2}}}+\dfrac{-2}{\left( x-1 \right)}+\dfrac{7}{{{\left( x-1 \right)}^{2}}}$, which is the required solution.
Note: It is to be remembered that the partial fraction skeleton is different for different values of the polynomial expressions. The main application of using partial fractions is in integration when the integration has to be performed on complex polynomial fractions which cannot be directly integrated.
Recently Updated Pages
Which cell organelles are present in white blood C class 11 biology CBSE

What is the molecular geometry of BrF4 A square planar class 11 chemistry CBSE

How can you explain that CCl4 has no dipole moment class 11 chemistry CBSE

Which will undergo SN2 reaction fastest among the following class 11 chemistry CBSE

The values of mass m for which the 100 kg block does class 11 physics CBSE

Why are voluntary muscles called striated muscles class 11 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

Show that total energy of a freely falling body remains class 11 physics CBSE

