
How do you express $\dfrac{1}{{{x^6} - {x^3}}}$ in partial fractions?
Answer
561.3k+ views
Hint: This problem deals with reducing the given complex fraction into partial fractions. In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction is an operation that consists of expressing the fraction as a sum of a polynomial and one or several fractions with a simpler denominator.
Complete step-by-step answer:
Given a complex fraction which is as given below:
\[ \Rightarrow \dfrac{1}{{{x^6} - {x^3}}}\]
Now consider the denominator of the above given partial fraction, as shown below:
$ \Rightarrow {x^6} - {x^3}$
Now this a polynomial can be written as a product of two other polynomials as shown:
$ \Rightarrow {x^6} - {x^3} = \left( {{x^3} - 1} \right){x^3}$
Now considering the given complex fraction as given below:
$ \Rightarrow \dfrac{1}{{{x^6} - {x^3}}} = \dfrac{1}{{\left( {{x^3} - 1} \right){x^3}}}$
The right hand side of the above equation can be split into:
$ \Rightarrow \dfrac{1}{{{x^6} - {x^3}}} = \dfrac{1}{{\left( {{x^3} - 1} \right)}} - \dfrac{1}{{{x^3}}}$
Now consider the polynomial ${x^3} - 1$, this can be written as shown below:
$ \Rightarrow {x^3} - 1 = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right)$
Now consider the fraction, as shown:
$ \Rightarrow \dfrac{1}{{{x^3} - 1}} = \dfrac{1}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}$
Multiply and divide the right hand side of the equation with 3:
\[ \Rightarrow \dfrac{1}{{{x^3} - 1}} = \dfrac{1}{3} \cdot \dfrac{3}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\]
Now the numerator of the right hand side of the equation can be written as:
\[ \Rightarrow \dfrac{1}{{{x^3} - 1}} = \dfrac{1}{3}\left[ {\dfrac{{\left( {{x^2} + x + 1} \right) - \left( {{x^2} + x - 2} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}} \right]\]
Now the polynomial \[{x^2} + x - 2\] is factored into $\left( {x - 1} \right)\left( {x + 2} \right)$, now substituting it as shown:
\[ \Rightarrow \dfrac{1}{{{x^3} - 1}} = \dfrac{1}{3}\left[ {\dfrac{{\left( {{x^2} + x + 1} \right) - \left( {x - 1} \right)\left( {x + 2} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}} \right]\]
Now splitting the fractions of the above equation as shown:
\[ \Rightarrow \dfrac{1}{{{x^3} - 1}} = \dfrac{1}{3}\left[ {\dfrac{{\left( {{x^2} + x + 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \dfrac{{\left( {x - 1} \right)\left( {x + 2} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}} \right]\]
\[ \Rightarrow \dfrac{1}{{{x^3} - 1}} = \dfrac{1}{3}\left[ {\dfrac{1}{{\left( {x - 1} \right)}} - \dfrac{{\left( {x + 2} \right)}}{{\left( {{x^2} + x + 1} \right)}}} \right]\]
So this fraction is split into these partial fractions:
\[\therefore \dfrac{1}{{{x^3} - 1}} = \dfrac{1}{{3\left( {x - 1} \right)}} - \dfrac{{\left( {x + 2} \right)}}{{3\left( {{x^2} + x + 1} \right)}}\]
Now substituting the partial fractions of \[\dfrac{1}{{{x^3} - 1}}\], in the given complex fraction as shown.
$ \Rightarrow \dfrac{1}{{{x^6} - {x^3}}} = \dfrac{1}{{\left( {{x^3} - 1} \right)}} - \dfrac{1}{{{x^3}}}$
$\therefore \dfrac{1}{{{x^6} - {x^3}}} = \dfrac{1}{{3\left( {x - 1} \right)}} - \dfrac{{\left( {x + 2} \right)}}{{3\left( {{x^2} + x + 1} \right)}} - \dfrac{1}{{{x^3}}}$
Note:
Please note that partial fractions can only be done if the degree of the numerator is strictly less than the degree of the denominator. Partial fractions are a way of breaking apart fractions with polynomials in them. The process of taking a rational expression and decomposing it into simpler rational expressions that we can add or subtract to get the original rational expression is called partial fraction decomposition.
Complete step-by-step answer:
Given a complex fraction which is as given below:
\[ \Rightarrow \dfrac{1}{{{x^6} - {x^3}}}\]
Now consider the denominator of the above given partial fraction, as shown below:
$ \Rightarrow {x^6} - {x^3}$
Now this a polynomial can be written as a product of two other polynomials as shown:
$ \Rightarrow {x^6} - {x^3} = \left( {{x^3} - 1} \right){x^3}$
Now considering the given complex fraction as given below:
$ \Rightarrow \dfrac{1}{{{x^6} - {x^3}}} = \dfrac{1}{{\left( {{x^3} - 1} \right){x^3}}}$
The right hand side of the above equation can be split into:
$ \Rightarrow \dfrac{1}{{{x^6} - {x^3}}} = \dfrac{1}{{\left( {{x^3} - 1} \right)}} - \dfrac{1}{{{x^3}}}$
Now consider the polynomial ${x^3} - 1$, this can be written as shown below:
$ \Rightarrow {x^3} - 1 = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right)$
Now consider the fraction, as shown:
$ \Rightarrow \dfrac{1}{{{x^3} - 1}} = \dfrac{1}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}$
Multiply and divide the right hand side of the equation with 3:
\[ \Rightarrow \dfrac{1}{{{x^3} - 1}} = \dfrac{1}{3} \cdot \dfrac{3}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\]
Now the numerator of the right hand side of the equation can be written as:
\[ \Rightarrow \dfrac{1}{{{x^3} - 1}} = \dfrac{1}{3}\left[ {\dfrac{{\left( {{x^2} + x + 1} \right) - \left( {{x^2} + x - 2} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}} \right]\]
Now the polynomial \[{x^2} + x - 2\] is factored into $\left( {x - 1} \right)\left( {x + 2} \right)$, now substituting it as shown:
\[ \Rightarrow \dfrac{1}{{{x^3} - 1}} = \dfrac{1}{3}\left[ {\dfrac{{\left( {{x^2} + x + 1} \right) - \left( {x - 1} \right)\left( {x + 2} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}} \right]\]
Now splitting the fractions of the above equation as shown:
\[ \Rightarrow \dfrac{1}{{{x^3} - 1}} = \dfrac{1}{3}\left[ {\dfrac{{\left( {{x^2} + x + 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \dfrac{{\left( {x - 1} \right)\left( {x + 2} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}} \right]\]
\[ \Rightarrow \dfrac{1}{{{x^3} - 1}} = \dfrac{1}{3}\left[ {\dfrac{1}{{\left( {x - 1} \right)}} - \dfrac{{\left( {x + 2} \right)}}{{\left( {{x^2} + x + 1} \right)}}} \right]\]
So this fraction is split into these partial fractions:
\[\therefore \dfrac{1}{{{x^3} - 1}} = \dfrac{1}{{3\left( {x - 1} \right)}} - \dfrac{{\left( {x + 2} \right)}}{{3\left( {{x^2} + x + 1} \right)}}\]
Now substituting the partial fractions of \[\dfrac{1}{{{x^3} - 1}}\], in the given complex fraction as shown.
$ \Rightarrow \dfrac{1}{{{x^6} - {x^3}}} = \dfrac{1}{{\left( {{x^3} - 1} \right)}} - \dfrac{1}{{{x^3}}}$
$\therefore \dfrac{1}{{{x^6} - {x^3}}} = \dfrac{1}{{3\left( {x - 1} \right)}} - \dfrac{{\left( {x + 2} \right)}}{{3\left( {{x^2} + x + 1} \right)}} - \dfrac{1}{{{x^3}}}$
Note:
Please note that partial fractions can only be done if the degree of the numerator is strictly less than the degree of the denominator. Partial fractions are a way of breaking apart fractions with polynomials in them. The process of taking a rational expression and decomposing it into simpler rational expressions that we can add or subtract to get the original rational expression is called partial fraction decomposition.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science

