Explain in the form of $a+ib$ where $a,b\in R$ ,$i=\sqrt{-1}$ . State values of a and b.
(i) $\left( 1+2i \right)\left( -2+i \right)$
(ii) $\left( 1+i \right){{\left( 1-i \right)}^{-1}}$
Answer
282k+ views
Hint: In the given questions we are given some complex numbers which we need to simplify and write in such a way that the real and imaginary parts are written separately. Also, we are asked to write the real and imaginary parts.
Complete step-by-step solution:
According to the question, we are given some complex numbers which we need to simplify by rationalizing and representing in such a way that the real and imaginary parts are written separately.
Now, in part (i) we are given two complex factors and we need to find the product initially and then write the real part and imaginary part.
Now, $\left( 1+2i \right)\left( -2+i \right)=-2-4i+i+2{{i}^{2}}$
Now, we know that the value of ${{i}^{2}}$ is -1. Therefore, replacing the value in our gained expression we get $\left( 1+2i \right)\left( -2+i \right)=-2-4i+i-2$.
Now, adding the real parts and also the imaginary part we will get the simplified form as $-4-3i$ .
Therefore, $a=-4$ and $b=-3$ .
Now, similarly simplifying the (ii) part we get, $\left( 1+i \right){{\left( 1-i \right)}^{-1}}=\dfrac{1+i}{1-i}$
Now we rationalise the complex number by multiplying and dividing by the conjugate of $1-i$, hence we get $\dfrac{1+i}{1-i} \times \dfrac{1+i}{1+i} = \dfrac{\left({1+i}\right)^2}{1-i^2}$
Now, again substituting the value of ${{i}^{2}}$ we will get $2$ in denominator and in numerator it will be $1+i^2+2i$ now on simplification we get $i$ .
Therefore, in this part we have only the imaginary part and the real part is 0 in this.
Therefore, $a=0$ and $b=1$ .
Note: In such a type of question, mainly where fractional terms are also involved, we forget to rationalize them and then we majorly have to remove the iota from the denominator in order to keep the term simple.
Complete step-by-step solution:
According to the question, we are given some complex numbers which we need to simplify by rationalizing and representing in such a way that the real and imaginary parts are written separately.
Now, in part (i) we are given two complex factors and we need to find the product initially and then write the real part and imaginary part.
Now, $\left( 1+2i \right)\left( -2+i \right)=-2-4i+i+2{{i}^{2}}$
Now, we know that the value of ${{i}^{2}}$ is -1. Therefore, replacing the value in our gained expression we get $\left( 1+2i \right)\left( -2+i \right)=-2-4i+i-2$.
Now, adding the real parts and also the imaginary part we will get the simplified form as $-4-3i$ .
Therefore, $a=-4$ and $b=-3$ .
Now, similarly simplifying the (ii) part we get, $\left( 1+i \right){{\left( 1-i \right)}^{-1}}=\dfrac{1+i}{1-i}$
Now we rationalise the complex number by multiplying and dividing by the conjugate of $1-i$, hence we get $\dfrac{1+i}{1-i} \times \dfrac{1+i}{1+i} = \dfrac{\left({1+i}\right)^2}{1-i^2}$
Now, again substituting the value of ${{i}^{2}}$ we will get $2$ in denominator and in numerator it will be $1+i^2+2i$ now on simplification we get $i$ .
Therefore, in this part we have only the imaginary part and the real part is 0 in this.
Therefore, $a=0$ and $b=1$ .
Note: In such a type of question, mainly where fractional terms are also involved, we forget to rationalize them and then we majorly have to remove the iota from the denominator in order to keep the term simple.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is 1 divided by 0 class 8 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Convert compound sentence to simple sentence He is class 10 english CBSE

India lies between latitudes and longitudes class 12 social science CBSE

Why are rivers important for the countrys economy class 12 social science CBSE

Distinguish between Khadar and Bhangar class 9 social science CBSE
