
Expand to 4 terms the following expressions: ${{\left( 1+\dfrac{1}{2}a \right)}^{-4}}$
Answer
603.3k+ views
Hint: Binomial expansion (or Binomial Theorem) which states that ${{\left( x+y \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{n-r}}{{y}^{r}}}$. Here use the binomial expansion for negative exponents i.e., $(1+x)^{-n} = 1 - nx + \dfrac{n(n+1)}{2!}x^2 + \dfrac{n(n+1)(n+2)}{3!}x^3 + . . . . . $
Complete step by step solution:
Note: Binomial expansion (also known as Binomial Theorem) describes the algebraic expansion of powers of a binomial. We expand the polynomial \[{{\left( x+y \right)}^{n}}\] into a sum involving terms of the form \[a{{x}^{b}}{{y}^{c}}\], where \[b\] and \[c\] are non-negative integers with \[b+c=n\] and the coefficient \[a\] of each term is a specific positive integer. The coefficient \[a\] in the term \[a{{x}^{b}}{{y}^{c}}\] is known as the binomial coefficient \[\left( \begin{align}
& n \\
& b \\
\end{align} \right)\] or \[\left( \begin{align}
& n \\
& c \\
\end{align} \right)\]. These coefficients for varying \[n\] and \[b\] can be arranged to form a Pascal’s Triangle. While using the formula of binomial expansion, one must keep in mind that \[n\] is a non-negative integer. That’s why to expand the expression \[{{\left( 1+\dfrac{1}{2}a \right)}^{-4}}\], we wrote it in terms of fraction to get positive value of \[n\].
Complete step by step solution:
We have the expression ${{\left( 1+\dfrac{1}{2}a \right)}^{-4}}$. We have to write its expansion upto $4$ terms. We will use the formula for binomial expansion of terms which is $(1+x)^{-n} = 1 - nx + \dfrac{n(n+1)}{2!}x^2 + \dfrac{n(n+1)(n+2)}{3!}x^3 + . . . . . $
On substituting the values that is $n=-4$ and $x=\dfrac{1}{2}a$
${{\left( 1+\dfrac{1}{2}a \right)}^{-4}} = 1 - (-4)\left(\dfrac{1}{2}a\right) + \dfrac{(-4)(-4+1)}{2!}\left(\dfrac{1}{2}a\right)^2 + \dfrac{-4(-4+1)(-4+2)}{3!}\left(\dfrac{1}{2}a\right)^3$
On simplifying the above equation, we get
${{\left( 1+\dfrac{1}{2}a \right)}^{-4}} = 1 + (2a) + {(-2)(-3)}\left(\dfrac{1}{4}a^2\right) + \dfrac{-4(-3)(-2)}{3\times 2}\left(\dfrac{1}{8}a^3\right) $
${{\left( 1+\dfrac{1}{2}a \right)}^{-4}} = 1 + (2a) + \left(\dfrac{3}{2}a^2\right) - \left(\dfrac{1}{2}a^3\right) $
Hence we get the expansion of $\left(1+\dfrac{1}{2}a\right)^{4}$ upto 4 terms as $1+2a+\dfrac{3}{2}a^2-\dfrac{1}{2}a^3$
Note: Binomial expansion (also known as Binomial Theorem) describes the algebraic expansion of powers of a binomial. We expand the polynomial \[{{\left( x+y \right)}^{n}}\] into a sum involving terms of the form \[a{{x}^{b}}{{y}^{c}}\], where \[b\] and \[c\] are non-negative integers with \[b+c=n\] and the coefficient \[a\] of each term is a specific positive integer. The coefficient \[a\] in the term \[a{{x}^{b}}{{y}^{c}}\] is known as the binomial coefficient \[\left( \begin{align}
& n \\
& b \\
\end{align} \right)\] or \[\left( \begin{align}
& n \\
& c \\
\end{align} \right)\]. These coefficients for varying \[n\] and \[b\] can be arranged to form a Pascal’s Triangle. While using the formula of binomial expansion, one must keep in mind that \[n\] is a non-negative integer. That’s why to expand the expression \[{{\left( 1+\dfrac{1}{2}a \right)}^{-4}}\], we wrote it in terms of fraction to get positive value of \[n\].
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

