
Expand the following binomial: ${\left( {1 + \dfrac{x}{2}} \right)^7}$
Answer
597.6k+ views
Hint- Here, we will proceed by using one of the special forms of the general form of binomial expansion.
As we know that according to special form of binomial theorem of expansion, we have
\[
{\left( {1 + x} \right)^n} = {}^n{C_0}{\left( 1 \right)^n}{\left( x \right)^0} + {}^n{C_1}{\left( 1 \right)^{n - 1}}{\left( x \right)^1} + {}^n{C_2}{\left( 1 \right)^{n - 2}}{\left( x \right)^2} + ..... + {}^n{C_{n - 1}}{\left( 1 \right)^1}{\left( x \right)^{n - 1}} + {}^n{C_n}{\left( 1 \right)^0}{\left( x \right)^n} \\
\Rightarrow {\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}\left( x \right) + {}^n{C_2}{\left( x \right)^2} + ..... + {}^n{C_{n - 1}}{\left( x \right)^{n - 1}} + {}^n{C_n}{\left( x \right)^n} \\
\]
where ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\; \to {\text{(1)}}$
Here for the binomial expansion of ${\left( {1 + \dfrac{x}{2}} \right)^7}$, $x$ is replaced by $\dfrac{x}{2}$ and the value of $n$ is 7.
${\left( {1 + \dfrac{x}{2}} \right)^7} = {}^7{C_0} + {}^7{C_1}\left( {\dfrac{x}{2}} \right) + {}^7{C_2}{\left( {\dfrac{x}{2}} \right)^2} + {}^7{C_3}{\left( {\dfrac{x}{2}} \right)^3} + {}^7{C_4}{\left( {\dfrac{x}{2}} \right)^4} + {}^7{C_5}{\left( {\dfrac{x}{2}} \right)^5} + {}^7{C_6}{\left( {\dfrac{x}{2}} \right)^6} + {}^7{C_7}{\left( {\dfrac{x}{2}} \right)^7}{\text{ }} \to {\text{(2)}}$
Now using equation (1), we can write
\[
{}^7{C_0} = \dfrac{{7!}}{{0!\left( {7 - 0} \right)!}}\; = \dfrac{{7!}}{{0!7!}}\; = 1{\text{ }}\left[ {\because 0! = 1} \right],{}^7{C_1} = \dfrac{{7!}}{{1!\left( {7 - 1} \right)!}}\; = \dfrac{{7.6!}}{{6!}}\; = 7 \\
{}^7{C_2} = \dfrac{{7!}}{{2!\left( {7 - 2} \right)!}}\; = \dfrac{{7.6.5!}}{{2.1.5!}}\; = \dfrac{{7 \times 6}}{2} = 21,{}^7{C_3} = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}}\; = \dfrac{{7.6.5.4!}}{{3.2.1.4!}}\; = \dfrac{{7 \times 6 \times 5}}{{3 \times 2}} = 35 \\
{}^7{C_4} = \dfrac{{7.6.5.4!}}{{4!\left( {7 - 4} \right)!}}\; = \dfrac{{7.6.5.4!}}{{4!3.2.1!}}\; = {}^7{C_3} = 35,{}^7{C_5} = \dfrac{{7.6.5!}}{{5!\left( {7 - 5} \right)!}}\; = \dfrac{{7.6.5!}}{{5!2.1!}}\; = {}^7{C_2} = 21 \\
{}^7{C_6} = \dfrac{{7.6!}}{{6!\left( {7 - 6} \right)!}}\; = \dfrac{{7.6!}}{{6!1!}}\; = {}^7{C_1} = 7,{}^7{C_7} = \dfrac{{7!}}{{7!\left( {7 - 7} \right)!}}\; = \dfrac{{7!}}{{7!0!}}\; = {}^7{C_0} = 1 \\
\\
\]
Now substituting all the above calculated values in equation (2), we get
${\left( {1 + \dfrac{x}{2}} \right)^7} = 1 + \dfrac{{7x}}{2} + \dfrac{{21{{\left( x \right)}^2}}}{4} + \dfrac{{35{{\left( x \right)}^3}}}{8} + \dfrac{{35{{\left( x \right)}^4}}}{{16}} + \dfrac{{21{{\left( x \right)}^5}}}{{32}} + \dfrac{{7{{\left( x \right)}^6}}}{{64}} + \dfrac{{{{\left( x \right)}^7}}}{{128}}$
The above equation shows the binomial expansion for ${\left( {1 + \dfrac{x}{2}} \right)^7}$.
Note- The general form of binomial expansion is \[{\left( {x + y} \right)^n} = {}^n{C_0}{\left( x \right)^n}{\left( y \right)^0} + {}^n{C_1}{\left( x \right)^{n - 1}}{\left( y \right)^1} + {}^n{C_2}{\left( x \right)^{n - 2}}{\left( y \right)^2} + ..... + {}^n{C_{n - 1}}{\left( x \right)^1}{\left( y \right)^{n - 1}} + {}^n{C_n}{\left( x \right)^0}{\left( y \right)^n}\] and in this problem, its special form is used by replacing $x$ by 1 and $y$ by $x$.
As we know that according to special form of binomial theorem of expansion, we have
\[
{\left( {1 + x} \right)^n} = {}^n{C_0}{\left( 1 \right)^n}{\left( x \right)^0} + {}^n{C_1}{\left( 1 \right)^{n - 1}}{\left( x \right)^1} + {}^n{C_2}{\left( 1 \right)^{n - 2}}{\left( x \right)^2} + ..... + {}^n{C_{n - 1}}{\left( 1 \right)^1}{\left( x \right)^{n - 1}} + {}^n{C_n}{\left( 1 \right)^0}{\left( x \right)^n} \\
\Rightarrow {\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}\left( x \right) + {}^n{C_2}{\left( x \right)^2} + ..... + {}^n{C_{n - 1}}{\left( x \right)^{n - 1}} + {}^n{C_n}{\left( x \right)^n} \\
\]
where ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\; \to {\text{(1)}}$
Here for the binomial expansion of ${\left( {1 + \dfrac{x}{2}} \right)^7}$, $x$ is replaced by $\dfrac{x}{2}$ and the value of $n$ is 7.
${\left( {1 + \dfrac{x}{2}} \right)^7} = {}^7{C_0} + {}^7{C_1}\left( {\dfrac{x}{2}} \right) + {}^7{C_2}{\left( {\dfrac{x}{2}} \right)^2} + {}^7{C_3}{\left( {\dfrac{x}{2}} \right)^3} + {}^7{C_4}{\left( {\dfrac{x}{2}} \right)^4} + {}^7{C_5}{\left( {\dfrac{x}{2}} \right)^5} + {}^7{C_6}{\left( {\dfrac{x}{2}} \right)^6} + {}^7{C_7}{\left( {\dfrac{x}{2}} \right)^7}{\text{ }} \to {\text{(2)}}$
Now using equation (1), we can write
\[
{}^7{C_0} = \dfrac{{7!}}{{0!\left( {7 - 0} \right)!}}\; = \dfrac{{7!}}{{0!7!}}\; = 1{\text{ }}\left[ {\because 0! = 1} \right],{}^7{C_1} = \dfrac{{7!}}{{1!\left( {7 - 1} \right)!}}\; = \dfrac{{7.6!}}{{6!}}\; = 7 \\
{}^7{C_2} = \dfrac{{7!}}{{2!\left( {7 - 2} \right)!}}\; = \dfrac{{7.6.5!}}{{2.1.5!}}\; = \dfrac{{7 \times 6}}{2} = 21,{}^7{C_3} = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}}\; = \dfrac{{7.6.5.4!}}{{3.2.1.4!}}\; = \dfrac{{7 \times 6 \times 5}}{{3 \times 2}} = 35 \\
{}^7{C_4} = \dfrac{{7.6.5.4!}}{{4!\left( {7 - 4} \right)!}}\; = \dfrac{{7.6.5.4!}}{{4!3.2.1!}}\; = {}^7{C_3} = 35,{}^7{C_5} = \dfrac{{7.6.5!}}{{5!\left( {7 - 5} \right)!}}\; = \dfrac{{7.6.5!}}{{5!2.1!}}\; = {}^7{C_2} = 21 \\
{}^7{C_6} = \dfrac{{7.6!}}{{6!\left( {7 - 6} \right)!}}\; = \dfrac{{7.6!}}{{6!1!}}\; = {}^7{C_1} = 7,{}^7{C_7} = \dfrac{{7!}}{{7!\left( {7 - 7} \right)!}}\; = \dfrac{{7!}}{{7!0!}}\; = {}^7{C_0} = 1 \\
\\
\]
Now substituting all the above calculated values in equation (2), we get
${\left( {1 + \dfrac{x}{2}} \right)^7} = 1 + \dfrac{{7x}}{2} + \dfrac{{21{{\left( x \right)}^2}}}{4} + \dfrac{{35{{\left( x \right)}^3}}}{8} + \dfrac{{35{{\left( x \right)}^4}}}{{16}} + \dfrac{{21{{\left( x \right)}^5}}}{{32}} + \dfrac{{7{{\left( x \right)}^6}}}{{64}} + \dfrac{{{{\left( x \right)}^7}}}{{128}}$
The above equation shows the binomial expansion for ${\left( {1 + \dfrac{x}{2}} \right)^7}$.
Note- The general form of binomial expansion is \[{\left( {x + y} \right)^n} = {}^n{C_0}{\left( x \right)^n}{\left( y \right)^0} + {}^n{C_1}{\left( x \right)^{n - 1}}{\left( y \right)^1} + {}^n{C_2}{\left( x \right)^{n - 2}}{\left( y \right)^2} + ..... + {}^n{C_{n - 1}}{\left( x \right)^1}{\left( y \right)^{n - 1}} + {}^n{C_n}{\left( x \right)^0}{\left( y \right)^n}\] and in this problem, its special form is used by replacing $x$ by 1 and $y$ by $x$.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

