
Expand the following binomial: ${\left( {1 + \dfrac{x}{2}} \right)^7}$
Answer
608.4k+ views
Hint- Here, we will proceed by using one of the special forms of the general form of binomial expansion.
As we know that according to special form of binomial theorem of expansion, we have
\[
{\left( {1 + x} \right)^n} = {}^n{C_0}{\left( 1 \right)^n}{\left( x \right)^0} + {}^n{C_1}{\left( 1 \right)^{n - 1}}{\left( x \right)^1} + {}^n{C_2}{\left( 1 \right)^{n - 2}}{\left( x \right)^2} + ..... + {}^n{C_{n - 1}}{\left( 1 \right)^1}{\left( x \right)^{n - 1}} + {}^n{C_n}{\left( 1 \right)^0}{\left( x \right)^n} \\
\Rightarrow {\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}\left( x \right) + {}^n{C_2}{\left( x \right)^2} + ..... + {}^n{C_{n - 1}}{\left( x \right)^{n - 1}} + {}^n{C_n}{\left( x \right)^n} \\
\]
where ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\; \to {\text{(1)}}$
Here for the binomial expansion of ${\left( {1 + \dfrac{x}{2}} \right)^7}$, $x$ is replaced by $\dfrac{x}{2}$ and the value of $n$ is 7.
${\left( {1 + \dfrac{x}{2}} \right)^7} = {}^7{C_0} + {}^7{C_1}\left( {\dfrac{x}{2}} \right) + {}^7{C_2}{\left( {\dfrac{x}{2}} \right)^2} + {}^7{C_3}{\left( {\dfrac{x}{2}} \right)^3} + {}^7{C_4}{\left( {\dfrac{x}{2}} \right)^4} + {}^7{C_5}{\left( {\dfrac{x}{2}} \right)^5} + {}^7{C_6}{\left( {\dfrac{x}{2}} \right)^6} + {}^7{C_7}{\left( {\dfrac{x}{2}} \right)^7}{\text{ }} \to {\text{(2)}}$
Now using equation (1), we can write
\[
{}^7{C_0} = \dfrac{{7!}}{{0!\left( {7 - 0} \right)!}}\; = \dfrac{{7!}}{{0!7!}}\; = 1{\text{ }}\left[ {\because 0! = 1} \right],{}^7{C_1} = \dfrac{{7!}}{{1!\left( {7 - 1} \right)!}}\; = \dfrac{{7.6!}}{{6!}}\; = 7 \\
{}^7{C_2} = \dfrac{{7!}}{{2!\left( {7 - 2} \right)!}}\; = \dfrac{{7.6.5!}}{{2.1.5!}}\; = \dfrac{{7 \times 6}}{2} = 21,{}^7{C_3} = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}}\; = \dfrac{{7.6.5.4!}}{{3.2.1.4!}}\; = \dfrac{{7 \times 6 \times 5}}{{3 \times 2}} = 35 \\
{}^7{C_4} = \dfrac{{7.6.5.4!}}{{4!\left( {7 - 4} \right)!}}\; = \dfrac{{7.6.5.4!}}{{4!3.2.1!}}\; = {}^7{C_3} = 35,{}^7{C_5} = \dfrac{{7.6.5!}}{{5!\left( {7 - 5} \right)!}}\; = \dfrac{{7.6.5!}}{{5!2.1!}}\; = {}^7{C_2} = 21 \\
{}^7{C_6} = \dfrac{{7.6!}}{{6!\left( {7 - 6} \right)!}}\; = \dfrac{{7.6!}}{{6!1!}}\; = {}^7{C_1} = 7,{}^7{C_7} = \dfrac{{7!}}{{7!\left( {7 - 7} \right)!}}\; = \dfrac{{7!}}{{7!0!}}\; = {}^7{C_0} = 1 \\
\\
\]
Now substituting all the above calculated values in equation (2), we get
${\left( {1 + \dfrac{x}{2}} \right)^7} = 1 + \dfrac{{7x}}{2} + \dfrac{{21{{\left( x \right)}^2}}}{4} + \dfrac{{35{{\left( x \right)}^3}}}{8} + \dfrac{{35{{\left( x \right)}^4}}}{{16}} + \dfrac{{21{{\left( x \right)}^5}}}{{32}} + \dfrac{{7{{\left( x \right)}^6}}}{{64}} + \dfrac{{{{\left( x \right)}^7}}}{{128}}$
The above equation shows the binomial expansion for ${\left( {1 + \dfrac{x}{2}} \right)^7}$.
Note- The general form of binomial expansion is \[{\left( {x + y} \right)^n} = {}^n{C_0}{\left( x \right)^n}{\left( y \right)^0} + {}^n{C_1}{\left( x \right)^{n - 1}}{\left( y \right)^1} + {}^n{C_2}{\left( x \right)^{n - 2}}{\left( y \right)^2} + ..... + {}^n{C_{n - 1}}{\left( x \right)^1}{\left( y \right)^{n - 1}} + {}^n{C_n}{\left( x \right)^0}{\left( y \right)^n}\] and in this problem, its special form is used by replacing $x$ by 1 and $y$ by $x$.
As we know that according to special form of binomial theorem of expansion, we have
\[
{\left( {1 + x} \right)^n} = {}^n{C_0}{\left( 1 \right)^n}{\left( x \right)^0} + {}^n{C_1}{\left( 1 \right)^{n - 1}}{\left( x \right)^1} + {}^n{C_2}{\left( 1 \right)^{n - 2}}{\left( x \right)^2} + ..... + {}^n{C_{n - 1}}{\left( 1 \right)^1}{\left( x \right)^{n - 1}} + {}^n{C_n}{\left( 1 \right)^0}{\left( x \right)^n} \\
\Rightarrow {\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}\left( x \right) + {}^n{C_2}{\left( x \right)^2} + ..... + {}^n{C_{n - 1}}{\left( x \right)^{n - 1}} + {}^n{C_n}{\left( x \right)^n} \\
\]
where ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\; \to {\text{(1)}}$
Here for the binomial expansion of ${\left( {1 + \dfrac{x}{2}} \right)^7}$, $x$ is replaced by $\dfrac{x}{2}$ and the value of $n$ is 7.
${\left( {1 + \dfrac{x}{2}} \right)^7} = {}^7{C_0} + {}^7{C_1}\left( {\dfrac{x}{2}} \right) + {}^7{C_2}{\left( {\dfrac{x}{2}} \right)^2} + {}^7{C_3}{\left( {\dfrac{x}{2}} \right)^3} + {}^7{C_4}{\left( {\dfrac{x}{2}} \right)^4} + {}^7{C_5}{\left( {\dfrac{x}{2}} \right)^5} + {}^7{C_6}{\left( {\dfrac{x}{2}} \right)^6} + {}^7{C_7}{\left( {\dfrac{x}{2}} \right)^7}{\text{ }} \to {\text{(2)}}$
Now using equation (1), we can write
\[
{}^7{C_0} = \dfrac{{7!}}{{0!\left( {7 - 0} \right)!}}\; = \dfrac{{7!}}{{0!7!}}\; = 1{\text{ }}\left[ {\because 0! = 1} \right],{}^7{C_1} = \dfrac{{7!}}{{1!\left( {7 - 1} \right)!}}\; = \dfrac{{7.6!}}{{6!}}\; = 7 \\
{}^7{C_2} = \dfrac{{7!}}{{2!\left( {7 - 2} \right)!}}\; = \dfrac{{7.6.5!}}{{2.1.5!}}\; = \dfrac{{7 \times 6}}{2} = 21,{}^7{C_3} = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}}\; = \dfrac{{7.6.5.4!}}{{3.2.1.4!}}\; = \dfrac{{7 \times 6 \times 5}}{{3 \times 2}} = 35 \\
{}^7{C_4} = \dfrac{{7.6.5.4!}}{{4!\left( {7 - 4} \right)!}}\; = \dfrac{{7.6.5.4!}}{{4!3.2.1!}}\; = {}^7{C_3} = 35,{}^7{C_5} = \dfrac{{7.6.5!}}{{5!\left( {7 - 5} \right)!}}\; = \dfrac{{7.6.5!}}{{5!2.1!}}\; = {}^7{C_2} = 21 \\
{}^7{C_6} = \dfrac{{7.6!}}{{6!\left( {7 - 6} \right)!}}\; = \dfrac{{7.6!}}{{6!1!}}\; = {}^7{C_1} = 7,{}^7{C_7} = \dfrac{{7!}}{{7!\left( {7 - 7} \right)!}}\; = \dfrac{{7!}}{{7!0!}}\; = {}^7{C_0} = 1 \\
\\
\]
Now substituting all the above calculated values in equation (2), we get
${\left( {1 + \dfrac{x}{2}} \right)^7} = 1 + \dfrac{{7x}}{2} + \dfrac{{21{{\left( x \right)}^2}}}{4} + \dfrac{{35{{\left( x \right)}^3}}}{8} + \dfrac{{35{{\left( x \right)}^4}}}{{16}} + \dfrac{{21{{\left( x \right)}^5}}}{{32}} + \dfrac{{7{{\left( x \right)}^6}}}{{64}} + \dfrac{{{{\left( x \right)}^7}}}{{128}}$
The above equation shows the binomial expansion for ${\left( {1 + \dfrac{x}{2}} \right)^7}$.
Note- The general form of binomial expansion is \[{\left( {x + y} \right)^n} = {}^n{C_0}{\left( x \right)^n}{\left( y \right)^0} + {}^n{C_1}{\left( x \right)^{n - 1}}{\left( y \right)^1} + {}^n{C_2}{\left( x \right)^{n - 2}}{\left( y \right)^2} + ..... + {}^n{C_{n - 1}}{\left( x \right)^1}{\left( y \right)^{n - 1}} + {}^n{C_n}{\left( x \right)^0}{\left( y \right)^n}\] and in this problem, its special form is used by replacing $x$ by 1 and $y$ by $x$.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which animal has three hearts class 11 biology CBSE

Which hormone is responsible for fruit ripening a Ethylene class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Define cubit handspan armlength and footspan class 11 physics CBSE

Write a short note on the Chipko movement class 11 biology CBSE

What are the Characteristics of Sound Waves?

