
Expand the following binomial: ${\left( {1 + \dfrac{x}{2}} \right)^7}$
Answer
605.4k+ views
Hint- Here, we will proceed by using one of the special forms of the general form of binomial expansion.
As we know that according to special form of binomial theorem of expansion, we have
\[
{\left( {1 + x} \right)^n} = {}^n{C_0}{\left( 1 \right)^n}{\left( x \right)^0} + {}^n{C_1}{\left( 1 \right)^{n - 1}}{\left( x \right)^1} + {}^n{C_2}{\left( 1 \right)^{n - 2}}{\left( x \right)^2} + ..... + {}^n{C_{n - 1}}{\left( 1 \right)^1}{\left( x \right)^{n - 1}} + {}^n{C_n}{\left( 1 \right)^0}{\left( x \right)^n} \\
\Rightarrow {\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}\left( x \right) + {}^n{C_2}{\left( x \right)^2} + ..... + {}^n{C_{n - 1}}{\left( x \right)^{n - 1}} + {}^n{C_n}{\left( x \right)^n} \\
\]
where ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\; \to {\text{(1)}}$
Here for the binomial expansion of ${\left( {1 + \dfrac{x}{2}} \right)^7}$, $x$ is replaced by $\dfrac{x}{2}$ and the value of $n$ is 7.
${\left( {1 + \dfrac{x}{2}} \right)^7} = {}^7{C_0} + {}^7{C_1}\left( {\dfrac{x}{2}} \right) + {}^7{C_2}{\left( {\dfrac{x}{2}} \right)^2} + {}^7{C_3}{\left( {\dfrac{x}{2}} \right)^3} + {}^7{C_4}{\left( {\dfrac{x}{2}} \right)^4} + {}^7{C_5}{\left( {\dfrac{x}{2}} \right)^5} + {}^7{C_6}{\left( {\dfrac{x}{2}} \right)^6} + {}^7{C_7}{\left( {\dfrac{x}{2}} \right)^7}{\text{ }} \to {\text{(2)}}$
Now using equation (1), we can write
\[
{}^7{C_0} = \dfrac{{7!}}{{0!\left( {7 - 0} \right)!}}\; = \dfrac{{7!}}{{0!7!}}\; = 1{\text{ }}\left[ {\because 0! = 1} \right],{}^7{C_1} = \dfrac{{7!}}{{1!\left( {7 - 1} \right)!}}\; = \dfrac{{7.6!}}{{6!}}\; = 7 \\
{}^7{C_2} = \dfrac{{7!}}{{2!\left( {7 - 2} \right)!}}\; = \dfrac{{7.6.5!}}{{2.1.5!}}\; = \dfrac{{7 \times 6}}{2} = 21,{}^7{C_3} = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}}\; = \dfrac{{7.6.5.4!}}{{3.2.1.4!}}\; = \dfrac{{7 \times 6 \times 5}}{{3 \times 2}} = 35 \\
{}^7{C_4} = \dfrac{{7.6.5.4!}}{{4!\left( {7 - 4} \right)!}}\; = \dfrac{{7.6.5.4!}}{{4!3.2.1!}}\; = {}^7{C_3} = 35,{}^7{C_5} = \dfrac{{7.6.5!}}{{5!\left( {7 - 5} \right)!}}\; = \dfrac{{7.6.5!}}{{5!2.1!}}\; = {}^7{C_2} = 21 \\
{}^7{C_6} = \dfrac{{7.6!}}{{6!\left( {7 - 6} \right)!}}\; = \dfrac{{7.6!}}{{6!1!}}\; = {}^7{C_1} = 7,{}^7{C_7} = \dfrac{{7!}}{{7!\left( {7 - 7} \right)!}}\; = \dfrac{{7!}}{{7!0!}}\; = {}^7{C_0} = 1 \\
\\
\]
Now substituting all the above calculated values in equation (2), we get
${\left( {1 + \dfrac{x}{2}} \right)^7} = 1 + \dfrac{{7x}}{2} + \dfrac{{21{{\left( x \right)}^2}}}{4} + \dfrac{{35{{\left( x \right)}^3}}}{8} + \dfrac{{35{{\left( x \right)}^4}}}{{16}} + \dfrac{{21{{\left( x \right)}^5}}}{{32}} + \dfrac{{7{{\left( x \right)}^6}}}{{64}} + \dfrac{{{{\left( x \right)}^7}}}{{128}}$
The above equation shows the binomial expansion for ${\left( {1 + \dfrac{x}{2}} \right)^7}$.
Note- The general form of binomial expansion is \[{\left( {x + y} \right)^n} = {}^n{C_0}{\left( x \right)^n}{\left( y \right)^0} + {}^n{C_1}{\left( x \right)^{n - 1}}{\left( y \right)^1} + {}^n{C_2}{\left( x \right)^{n - 2}}{\left( y \right)^2} + ..... + {}^n{C_{n - 1}}{\left( x \right)^1}{\left( y \right)^{n - 1}} + {}^n{C_n}{\left( x \right)^0}{\left( y \right)^n}\] and in this problem, its special form is used by replacing $x$ by 1 and $y$ by $x$.
As we know that according to special form of binomial theorem of expansion, we have
\[
{\left( {1 + x} \right)^n} = {}^n{C_0}{\left( 1 \right)^n}{\left( x \right)^0} + {}^n{C_1}{\left( 1 \right)^{n - 1}}{\left( x \right)^1} + {}^n{C_2}{\left( 1 \right)^{n - 2}}{\left( x \right)^2} + ..... + {}^n{C_{n - 1}}{\left( 1 \right)^1}{\left( x \right)^{n - 1}} + {}^n{C_n}{\left( 1 \right)^0}{\left( x \right)^n} \\
\Rightarrow {\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}\left( x \right) + {}^n{C_2}{\left( x \right)^2} + ..... + {}^n{C_{n - 1}}{\left( x \right)^{n - 1}} + {}^n{C_n}{\left( x \right)^n} \\
\]
where ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\; \to {\text{(1)}}$
Here for the binomial expansion of ${\left( {1 + \dfrac{x}{2}} \right)^7}$, $x$ is replaced by $\dfrac{x}{2}$ and the value of $n$ is 7.
${\left( {1 + \dfrac{x}{2}} \right)^7} = {}^7{C_0} + {}^7{C_1}\left( {\dfrac{x}{2}} \right) + {}^7{C_2}{\left( {\dfrac{x}{2}} \right)^2} + {}^7{C_3}{\left( {\dfrac{x}{2}} \right)^3} + {}^7{C_4}{\left( {\dfrac{x}{2}} \right)^4} + {}^7{C_5}{\left( {\dfrac{x}{2}} \right)^5} + {}^7{C_6}{\left( {\dfrac{x}{2}} \right)^6} + {}^7{C_7}{\left( {\dfrac{x}{2}} \right)^7}{\text{ }} \to {\text{(2)}}$
Now using equation (1), we can write
\[
{}^7{C_0} = \dfrac{{7!}}{{0!\left( {7 - 0} \right)!}}\; = \dfrac{{7!}}{{0!7!}}\; = 1{\text{ }}\left[ {\because 0! = 1} \right],{}^7{C_1} = \dfrac{{7!}}{{1!\left( {7 - 1} \right)!}}\; = \dfrac{{7.6!}}{{6!}}\; = 7 \\
{}^7{C_2} = \dfrac{{7!}}{{2!\left( {7 - 2} \right)!}}\; = \dfrac{{7.6.5!}}{{2.1.5!}}\; = \dfrac{{7 \times 6}}{2} = 21,{}^7{C_3} = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}}\; = \dfrac{{7.6.5.4!}}{{3.2.1.4!}}\; = \dfrac{{7 \times 6 \times 5}}{{3 \times 2}} = 35 \\
{}^7{C_4} = \dfrac{{7.6.5.4!}}{{4!\left( {7 - 4} \right)!}}\; = \dfrac{{7.6.5.4!}}{{4!3.2.1!}}\; = {}^7{C_3} = 35,{}^7{C_5} = \dfrac{{7.6.5!}}{{5!\left( {7 - 5} \right)!}}\; = \dfrac{{7.6.5!}}{{5!2.1!}}\; = {}^7{C_2} = 21 \\
{}^7{C_6} = \dfrac{{7.6!}}{{6!\left( {7 - 6} \right)!}}\; = \dfrac{{7.6!}}{{6!1!}}\; = {}^7{C_1} = 7,{}^7{C_7} = \dfrac{{7!}}{{7!\left( {7 - 7} \right)!}}\; = \dfrac{{7!}}{{7!0!}}\; = {}^7{C_0} = 1 \\
\\
\]
Now substituting all the above calculated values in equation (2), we get
${\left( {1 + \dfrac{x}{2}} \right)^7} = 1 + \dfrac{{7x}}{2} + \dfrac{{21{{\left( x \right)}^2}}}{4} + \dfrac{{35{{\left( x \right)}^3}}}{8} + \dfrac{{35{{\left( x \right)}^4}}}{{16}} + \dfrac{{21{{\left( x \right)}^5}}}{{32}} + \dfrac{{7{{\left( x \right)}^6}}}{{64}} + \dfrac{{{{\left( x \right)}^7}}}{{128}}$
The above equation shows the binomial expansion for ${\left( {1 + \dfrac{x}{2}} \right)^7}$.
Note- The general form of binomial expansion is \[{\left( {x + y} \right)^n} = {}^n{C_0}{\left( x \right)^n}{\left( y \right)^0} + {}^n{C_1}{\left( x \right)^{n - 1}}{\left( y \right)^1} + {}^n{C_2}{\left( x \right)^{n - 2}}{\left( y \right)^2} + ..... + {}^n{C_{n - 1}}{\left( x \right)^1}{\left( y \right)^{n - 1}} + {}^n{C_n}{\left( x \right)^0}{\left( y \right)^n}\] and in this problem, its special form is used by replacing $x$ by 1 and $y$ by $x$.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which key is used to edit in Excel?

Who was the father of the computer?

One question related to FORTRAN?

Who is the inventor of WWW?

What is meant by a bug?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

