Answer
Verified
385.2k+ views
Hint:We will split the full in in two angles like the formula of addition and subtraction of angles. Then we will apply the formula of addition and subtraction of angles.Putting the values of respective functions for the respective angle we will calculate the value for \[\cos \left( {\dfrac{\pi }{{12}}} \right)\].
Complete step by step answer:
Given is the angle, \[\cos \left( {\dfrac{\pi }{{12}}} \right)\]
It can be written as, \[\cos \left( {\dfrac{\pi }{{12}}} \right) = \cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right)\]
We know that, \[\cos (A - B) = \cos A.\cos B + \sin A.\sin B\]
So we will substitute the value for angle A and B,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \cos \dfrac{\pi }{4}.\cos \dfrac{\pi }{6} + \sin \dfrac{\pi }{4}.\sin \dfrac{\pi }{6}\]
We will place the values of the respective function and the angle,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}\]
Here since the denominator of both the terms is same we can directly add the numerator,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\]
Now we will multiply the numerator and denominator by \[\sqrt 2 \]
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \left( {\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}} \right) \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\]
In the numerator there will be separate multiplication and in denominator the product of two roots with same under root will be the number itself,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \left( {\dfrac{{\sqrt 3 \times \sqrt 2 + \sqrt 2 }}{{2\sqrt 2 \times \sqrt 2 }}} \right)\]
Now,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 6 + \sqrt 2 }}{{2 \times 2}}\]
The denominator will be,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 6 + \sqrt 2 }}{4}\]
Hence the correct answer is \[\cos \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 6 + \sqrt 2 }}{4}\].
Note: If the value for any trigonometric function is not available directly, we at such times use these types of formulas. That includes either double angles, triple angles, sum and difference formulae, factorization and defactorization formulae. These are used as per the requirement of the problem.
Complete step by step answer:
Given is the angle, \[\cos \left( {\dfrac{\pi }{{12}}} \right)\]
It can be written as, \[\cos \left( {\dfrac{\pi }{{12}}} \right) = \cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right)\]
We know that, \[\cos (A - B) = \cos A.\cos B + \sin A.\sin B\]
So we will substitute the value for angle A and B,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \cos \dfrac{\pi }{4}.\cos \dfrac{\pi }{6} + \sin \dfrac{\pi }{4}.\sin \dfrac{\pi }{6}\]
We will place the values of the respective function and the angle,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}\]
Here since the denominator of both the terms is same we can directly add the numerator,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\]
Now we will multiply the numerator and denominator by \[\sqrt 2 \]
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \left( {\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}} \right) \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\]
In the numerator there will be separate multiplication and in denominator the product of two roots with same under root will be the number itself,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \left( {\dfrac{{\sqrt 3 \times \sqrt 2 + \sqrt 2 }}{{2\sqrt 2 \times \sqrt 2 }}} \right)\]
Now,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 6 + \sqrt 2 }}{{2 \times 2}}\]
The denominator will be,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 6 + \sqrt 2 }}{4}\]
Hence the correct answer is \[\cos \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 6 + \sqrt 2 }}{4}\].
Note: If the value for any trigonometric function is not available directly, we at such times use these types of formulas. That includes either double angles, triple angles, sum and difference formulae, factorization and defactorization formulae. These are used as per the requirement of the problem.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Write the difference between order and molecularity class 11 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What are noble gases Why are they also called inert class 11 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between calcination and roasting class 11 chemistry CBSE