Answer

Verified

348.3k+ views

**Hint:**We will split the full in in two angles like the formula of addition and subtraction of angles. Then we will apply the formula of addition and subtraction of angles.Putting the values of respective functions for the respective angle we will calculate the value for \[\cos \left( {\dfrac{\pi }{{12}}} \right)\].

**Complete step by step answer:**

Given is the angle, \[\cos \left( {\dfrac{\pi }{{12}}} \right)\]

It can be written as, \[\cos \left( {\dfrac{\pi }{{12}}} \right) = \cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right)\]

We know that, \[\cos (A - B) = \cos A.\cos B + \sin A.\sin B\]

So we will substitute the value for angle A and B,

\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \cos \dfrac{\pi }{4}.\cos \dfrac{\pi }{6} + \sin \dfrac{\pi }{4}.\sin \dfrac{\pi }{6}\]

We will place the values of the respective function and the angle,

\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}\]

Here since the denominator of both the terms is same we can directly add the numerator,

\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\]

Now we will multiply the numerator and denominator by \[\sqrt 2 \]

\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \left( {\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}} \right) \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\]

In the numerator there will be separate multiplication and in denominator the product of two roots with same under root will be the number itself,

\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \left( {\dfrac{{\sqrt 3 \times \sqrt 2 + \sqrt 2 }}{{2\sqrt 2 \times \sqrt 2 }}} \right)\]

Now,

\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 6 + \sqrt 2 }}{{2 \times 2}}\]

The denominator will be,

\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 6 + \sqrt 2 }}{4}\]

**Hence the correct answer is \[\cos \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 6 + \sqrt 2 }}{4}\].**

**Note:**If the value for any trigonometric function is not available directly, we at such times use these types of formulas. That includes either double angles, triple angles, sum and difference formulae, factorization and defactorization formulae. These are used as per the requirement of the problem.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

The 3 + 3 times 3 3 + 3 What is the right answer and class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE