What is the exact value for \[\cos \left( {\dfrac{\pi }{{12}}} \right)\].
Last updated date: 29th Mar 2023
•
Total views: 206.7k
•
Views today: 4.84k
Answer
206.7k+ views
Hint:We will split the full in in two angles like the formula of addition and subtraction of angles. Then we will apply the formula of addition and subtraction of angles.Putting the values of respective functions for the respective angle we will calculate the value for \[\cos \left( {\dfrac{\pi }{{12}}} \right)\].
Complete step by step answer:
Given is the angle, \[\cos \left( {\dfrac{\pi }{{12}}} \right)\]
It can be written as, \[\cos \left( {\dfrac{\pi }{{12}}} \right) = \cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right)\]
We know that, \[\cos (A - B) = \cos A.\cos B + \sin A.\sin B\]
So we will substitute the value for angle A and B,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \cos \dfrac{\pi }{4}.\cos \dfrac{\pi }{6} + \sin \dfrac{\pi }{4}.\sin \dfrac{\pi }{6}\]
We will place the values of the respective function and the angle,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}\]
Here since the denominator of both the terms is same we can directly add the numerator,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\]
Now we will multiply the numerator and denominator by \[\sqrt 2 \]
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \left( {\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}} \right) \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\]
In the numerator there will be separate multiplication and in denominator the product of two roots with same under root will be the number itself,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \left( {\dfrac{{\sqrt 3 \times \sqrt 2 + \sqrt 2 }}{{2\sqrt 2 \times \sqrt 2 }}} \right)\]
Now,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 6 + \sqrt 2 }}{{2 \times 2}}\]
The denominator will be,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 6 + \sqrt 2 }}{4}\]
Hence the correct answer is \[\cos \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 6 + \sqrt 2 }}{4}\].
Note: If the value for any trigonometric function is not available directly, we at such times use these types of formulas. That includes either double angles, triple angles, sum and difference formulae, factorization and defactorization formulae. These are used as per the requirement of the problem.
Complete step by step answer:
Given is the angle, \[\cos \left( {\dfrac{\pi }{{12}}} \right)\]
It can be written as, \[\cos \left( {\dfrac{\pi }{{12}}} \right) = \cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right)\]
We know that, \[\cos (A - B) = \cos A.\cos B + \sin A.\sin B\]
So we will substitute the value for angle A and B,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \cos \dfrac{\pi }{4}.\cos \dfrac{\pi }{6} + \sin \dfrac{\pi }{4}.\sin \dfrac{\pi }{6}\]
We will place the values of the respective function and the angle,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}\]
Here since the denominator of both the terms is same we can directly add the numerator,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\]
Now we will multiply the numerator and denominator by \[\sqrt 2 \]
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \left( {\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}} \right) \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\]
In the numerator there will be separate multiplication and in denominator the product of two roots with same under root will be the number itself,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \left( {\dfrac{{\sqrt 3 \times \sqrt 2 + \sqrt 2 }}{{2\sqrt 2 \times \sqrt 2 }}} \right)\]
Now,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 6 + \sqrt 2 }}{{2 \times 2}}\]
The denominator will be,
\[\cos \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 6 + \sqrt 2 }}{4}\]
Hence the correct answer is \[\cos \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 6 + \sqrt 2 }}{4}\].
Note: If the value for any trigonometric function is not available directly, we at such times use these types of formulas. That includes either double angles, triple angles, sum and difference formulae, factorization and defactorization formulae. These are used as per the requirement of the problem.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
