Answer
Verified
424.2k+ views
Hint: We have to evaluate ${}^{5}{{P}_{4}}$ which is the permutation and of the form ${}^{n}{{P}_{r}}$ and we know that the expansion of ${}^{n}{{P}_{r}}$ is equal to $\dfrac{n!}{\left( n-r \right)!}$. Now, substitute n as 5 and r as 4 in this formula to get the value of ${}^{5}{{P}_{4}}$. Also, the expansion of $n!$ is equal to $n\left( n-1 \right)\left( n-2 \right).....3.2.1$ so use this expansion to solve the factorials in the formula of ${}^{n}{{P}_{r}}$.
Complete step-by-step solution:
We have to evaluate the following:
${}^{5}{{P}_{4}}$
The above expression is the permutation and of the following form:
${}^{n}{{P}_{r}}$
The expansion of the above expression in terms of factorial is as follows:
$\dfrac{n!}{\left( n-r \right)!}$
Substituting n as 5 and r as 4 in the above expression we get,
$\Rightarrow \dfrac{5!}{\left( 5-4 \right)!}$
The above expression is the expansion of ${}^{5}{{P}_{4}}$ so simplifying the above expression we get,
$\Rightarrow \dfrac{5!}{\left( 1 \right)!}$
The expansion of $5!$ is as follows:
$\begin{align}
& =5.4.3.2.1 \\
& =120 \\
\end{align}$
And the value of $1!$ is equal to 1 so substituting the value of $5!\And 1!$ in $\dfrac{5!}{\left( 1 \right)!}$ we get,
$\begin{align}
& =\dfrac{120}{1} \\
& =120 \\
\end{align}$
From the above, we have evaluated ${}^{5}{{P}_{4}}$ as 120.
Hence, the correct option is (b).
Note: The significance and meaning of the expression ${}^{5}{{P}_{4}}$ written in the above problem is that it means these are the possible ways to arrange 4 persons in 5 chairs. And here, all the 5 chairs are different. So, from this we can learn the concept of arrangement of n persons in r chairs or n persons in n rows.
As for permutations or arrangement of things we use ${}^{n}{{P}_{r}}$ so for combinations or selections we use ${}^{n}{{C}_{r}}$. This expression ${}^{n}{{C}_{r}}$ means the number of possible ways of selecting r items from n items in which order does not matter.
Complete step-by-step solution:
We have to evaluate the following:
${}^{5}{{P}_{4}}$
The above expression is the permutation and of the following form:
${}^{n}{{P}_{r}}$
The expansion of the above expression in terms of factorial is as follows:
$\dfrac{n!}{\left( n-r \right)!}$
Substituting n as 5 and r as 4 in the above expression we get,
$\Rightarrow \dfrac{5!}{\left( 5-4 \right)!}$
The above expression is the expansion of ${}^{5}{{P}_{4}}$ so simplifying the above expression we get,
$\Rightarrow \dfrac{5!}{\left( 1 \right)!}$
The expansion of $5!$ is as follows:
$\begin{align}
& =5.4.3.2.1 \\
& =120 \\
\end{align}$
And the value of $1!$ is equal to 1 so substituting the value of $5!\And 1!$ in $\dfrac{5!}{\left( 1 \right)!}$ we get,
$\begin{align}
& =\dfrac{120}{1} \\
& =120 \\
\end{align}$
From the above, we have evaluated ${}^{5}{{P}_{4}}$ as 120.
Hence, the correct option is (b).
Note: The significance and meaning of the expression ${}^{5}{{P}_{4}}$ written in the above problem is that it means these are the possible ways to arrange 4 persons in 5 chairs. And here, all the 5 chairs are different. So, from this we can learn the concept of arrangement of n persons in r chairs or n persons in n rows.
As for permutations or arrangement of things we use ${}^{n}{{P}_{r}}$ so for combinations or selections we use ${}^{n}{{C}_{r}}$. This expression ${}^{n}{{C}_{r}}$ means the number of possible ways of selecting r items from n items in which order does not matter.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE