
Evaluate$\int {{{\sin }^4}x{{\cos }^3}xdx.} $
Answer
623.1k+ views
Hint: Use substitution method i.e. substitute $\sin x = t$ for easy simplification.
Let, $I = \int {{{\sin }^4}x{{\cos }^3}xdx} = \int {{{\sin }^4}x{{\cos }^2}x\cos xdx} $
As we know${\cos ^2}x = \left( {1 - {{\sin }^2}x} \right)$, so substitute this value.
$ \Rightarrow I = \int {{{\sin }^4}x{{\cos }^3}xdx} = \int {{{\sin }^4}x\left( {1 - {{\sin }^2}x} \right)\cos xdx} .................\left( 1 \right)$
Now, let $\sin x = t$
Differentiate above equation w.r.t.$x$
As we know $\sin x$differentiation is $\cos x$
$ \Rightarrow \cos xdx = dt$
So, substitute this value in equation (1).
$
I = \int {{{\sin }^4}x\left( {1 - {{\sin }^2}x} \right)\cos xdx} = \int {{t^4}\left( {1 - {t^2}} \right)dt} \\
\Rightarrow I = \int {\left( {{t^4} - {t^6}} \right)dt} \\
$
Now, integrate it, as we know$\int {{t^n}dt = \left[ {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right]} $, so apply this property.
$ \Rightarrow I = \left[ {\dfrac{{{t^5}}}{5} - \dfrac{{{t^7}}}{7}} \right] + c$, (where c is some arbitrary integration constant)
L.C.M of 5 and 7 is 35, and take ${t^5}$as common
$ \Rightarrow I = \dfrac{{{t^5}}}{{35}}\left[ {7 - 5{t^2}} \right] + c$
Now re-substitute the value of $t = \sin x$
$ \Rightarrow I = \dfrac{{\left( {{{\sin }^5}x} \right)}}{{35}}\left[ {7 - 5\left( {{{\sin }^2}x} \right)} \right] + c$
So, this is the required value of the integration.
Note: In such types of questions always choose substitution which makes integration simple, in above integration we choose $\sin x = t$, so it makes integration simple, then we easily integrate using some basic property of integration which is stated above, then simplify we will get the required answer.
Let, $I = \int {{{\sin }^4}x{{\cos }^3}xdx} = \int {{{\sin }^4}x{{\cos }^2}x\cos xdx} $
As we know${\cos ^2}x = \left( {1 - {{\sin }^2}x} \right)$, so substitute this value.
$ \Rightarrow I = \int {{{\sin }^4}x{{\cos }^3}xdx} = \int {{{\sin }^4}x\left( {1 - {{\sin }^2}x} \right)\cos xdx} .................\left( 1 \right)$
Now, let $\sin x = t$
Differentiate above equation w.r.t.$x$
As we know $\sin x$differentiation is $\cos x$
$ \Rightarrow \cos xdx = dt$
So, substitute this value in equation (1).
$
I = \int {{{\sin }^4}x\left( {1 - {{\sin }^2}x} \right)\cos xdx} = \int {{t^4}\left( {1 - {t^2}} \right)dt} \\
\Rightarrow I = \int {\left( {{t^4} - {t^6}} \right)dt} \\
$
Now, integrate it, as we know$\int {{t^n}dt = \left[ {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right]} $, so apply this property.
$ \Rightarrow I = \left[ {\dfrac{{{t^5}}}{5} - \dfrac{{{t^7}}}{7}} \right] + c$, (where c is some arbitrary integration constant)
L.C.M of 5 and 7 is 35, and take ${t^5}$as common
$ \Rightarrow I = \dfrac{{{t^5}}}{{35}}\left[ {7 - 5{t^2}} \right] + c$
Now re-substitute the value of $t = \sin x$
$ \Rightarrow I = \dfrac{{\left( {{{\sin }^5}x} \right)}}{{35}}\left[ {7 - 5\left( {{{\sin }^2}x} \right)} \right] + c$
So, this is the required value of the integration.
Note: In such types of questions always choose substitution which makes integration simple, in above integration we choose $\sin x = t$, so it makes integration simple, then we easily integrate using some basic property of integration which is stated above, then simplify we will get the required answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

