Question
Answers

Evaluate$\int {{{\sin }^4}x{{\cos }^3}xdx.} $

Answer Verified Verified
Hint: Use substitution method i.e. substitute $\sin x = t$ for easy simplification.

Let, $I = \int {{{\sin }^4}x{{\cos }^3}xdx} = \int {{{\sin }^4}x{{\cos }^2}x\cos xdx} $
As we know${\cos ^2}x = \left( {1 - {{\sin }^2}x} \right)$, so substitute this value.
$ \Rightarrow I = \int {{{\sin }^4}x{{\cos }^3}xdx} = \int {{{\sin }^4}x\left( {1 - {{\sin }^2}x} \right)\cos xdx} .................\left( 1 \right)$
Now, let $\sin x = t$
Differentiate above equation w.r.t.$x$
As we know $\sin x$differentiation is $\cos x$
$ \Rightarrow \cos xdx = dt$
So, substitute this value in equation (1).
$
  I = \int {{{\sin }^4}x\left( {1 - {{\sin }^2}x} \right)\cos xdx} = \int {{t^4}\left( {1 - {t^2}} \right)dt} \\
   \Rightarrow I = \int {\left( {{t^4} - {t^6}} \right)dt} \\
$
Now, integrate it, as we know$\int {{t^n}dt = \left[ {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right]} $, so apply this property.
$ \Rightarrow I = \left[ {\dfrac{{{t^5}}}{5} - \dfrac{{{t^7}}}{7}} \right] + c$, (where c is some arbitrary integration constant)
L.C.M of 5 and 7 is 35, and take ${t^5}$as common
$ \Rightarrow I = \dfrac{{{t^5}}}{{35}}\left[ {7 - 5{t^2}} \right] + c$
Now re-substitute the value of $t = \sin x$
$ \Rightarrow I = \dfrac{{\left( {{{\sin }^5}x} \right)}}{{35}}\left[ {7 - 5\left( {{{\sin }^2}x} \right)} \right] + c$
So, this is the required value of the integration.

Note: In such types of questions always choose substitution which makes integration simple, in above integration we choose $\sin x = t$, so it makes integration simple, then we easily integrate using some basic property of integration which is stated above, then simplify we will get the required answer.
Bookmark added to your notes.
View Notes
×