Evaluate \[\underset{x\to 1}{\mathop{\lim }}\,\dfrac{\left( \ln \left( 1+x \right)-\ln 2 \right)\left( {{3.4}^{x-1}}-3x \right)}{\left[ {{\left( 7+x \right)}^{\dfrac{1}{3}}}-{{\left( 1+3x \right)}^{\dfrac{1}{2}}} \right]\sin \left( x-1 \right)}\].
Last updated date: 27th Mar 2023
•
Total views: 306k
•
Views today: 5.82k
Answer
306k+ views
Hint: Given limit \[x\to 1\], make the limit \[h\to 0\]. Simplify the expression and substitute using the L-Hospital rule if you get indeterminate form at h=0 as \[\dfrac{0}{0}\]. After simplifying the expression put, \[h\to 0\]and evaluate the expression.
Complete step-by-step answer:
We have to evaluate the given limit which is \[x\to 1\].
Let us put, \[x=1+h\].
If x = 1, then, \[1=1+h\Rightarrow h=0\].
Therefore, limit \[x\to 1\]changes to limit \[h\to 0\].
Therefore, to evaluate changes, put \[x=1+h\].
\[\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \ln \left( 1+1+h \right)-\ln 2 \right)\left( {{3.4}^{1+h-1}}-3\left( 1+h \right) \right)}{\left[ {{\left( 7+1+h \right)}^{\dfrac{1}{3}}}-{{\left[ 1+3\left( 1+h \right) \right]}^{\dfrac{1}{2}}} \right]\sin \left[ 1+h-1 \right]} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \ln \left( 2+h \right)-\ln 2 \right)\left( {{3.4}^{h}}-3-3h \right)}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh } \\
\end{align}\]
We know, \[\ln a-\ln b=\ln \left( \dfrac{a}{b} \right)\].
\[\therefore \ln \left( 2+h \right)-\ln 2=\ln \left( \dfrac{2+h}{2} \right)=\ln \left( 1+\dfrac{h}{2} \right)\]
\[=\lim \dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left( {{3.4}^{h}}-3-3h \right)}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh }\]
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh }\]
We know, \[\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sinh }{h}=1\].
Similarly, \[\underset{a\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+a \right)}{a}=1\].
Let us multiply 2h in the numerator and denominator.
\[\begin{align}
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]\times 2\times h}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh \times 2\times h} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh \times \dfrac{2h}{2h}} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\dfrac{h}{2}\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\left( \dfrac{\sinh }{h} \right)\times 2} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\dfrac{h}{2}\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\left[ \dfrac{\sinh }{h} \right]\times 2} \\
\end{align}\]
\[\dfrac{\ln \left( 1+\dfrac{h}{2} \right)}{\dfrac{h}{2}}=1\]and \[\dfrac{\sinh }{h}=1\].
L-Hospital rule states that for functions f and g are differentiable on an open interval I except possibly at point C contained I, if $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)=0$or $\pm \infty $, $g'\left( x \right)\ne 0$for all x in I with $x\ne c$, thus $\underset{x\to c}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}$.
If we apply $h\to 0$in equation (1), then the indeterminate form at $h\to 0$is $\dfrac{0}{0}$.
Thus, differentiate the numerator and denominator to simplify the expression to a limit that can be evaluated directly.
Let us put, $y={{4}^{h}}$.
$\begin{align}
& \ln y=\ln \left( {{4}^{h}} \right) \\
& \ln y=h\ln 4 \\
\end{align}$.
Differentiating both sides,
$\dfrac{1}{y}\dfrac{dy}{dh}=\ln 4$
$\Rightarrow \dfrac{dy}{dh}=y\ln 4$ (where, $y={{4}^{h}}$)
\[\Rightarrow \dfrac{dy}{dh}={{4}^{h}}.\ln 4\]
Applying L-Hospital rule once,
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{3\left( {{4}^{h}}.\ln 4-1 \right)}{2\left[ \dfrac{1}{3}{{\left( 8+h \right)}^{\dfrac{1}{3}-1}}-\dfrac{3}{2}{{\left( 4+3h \right)}^{\dfrac{1}{2}-1}} \right]}\]
Put h = 0, in the above equation.
\[\begin{align}
& =\dfrac{3\left( {{4}^{h}}.\ln 4-1 \right)}{2\left[ \dfrac{1}{3}{{8}^{\dfrac{-2}{3}}}-\dfrac{3}{2}{{4}^{\dfrac{-1}{2}}} \right]}=\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{3}\times \dfrac{1}{{{8}^{\dfrac{2}{3}}}}-\dfrac{1}{2}\times \dfrac{3}{{{4}^{\dfrac{1}{2}}}} \right]} \\
& =\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{3}\times \dfrac{1}{{{\left( {{2}^{3}} \right)}^{\dfrac{2}{3}}}}-\dfrac{1}{2}\times \dfrac{3}{2} \right]} \\
& =\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{3}\times \dfrac{1}{{{2}^{2}}}-\dfrac{3}{4} \right]}=\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{12}-\dfrac{3}{4} \right]} \\
& =\dfrac{3\left( 0-1 \right)}{2\left[ \dfrac{4-36}{12\times 4} \right]}=\dfrac{-3}{\dfrac{-2\times \left( 32 \right)}{12\times 4}}=\dfrac{-3}{\dfrac{-64}{48}}=\dfrac{-9}{4}\left( -1 \right)=\dfrac{9}{4} \\
\end{align}\]
Hence, the limit evaluates to \[\dfrac{9}{4}\].
Note: In limits be careful to use formula to simplify the expression wherever necessary. We have used substitutions and formulae to solve the limit. Remember these steps involved and how to change the limit \[\left( x\to 1 \right)\]to \[h\to 0\]. You can’t apply \[\left( x\to 1 \right)\]in an expression like this. So remember to convert it to \[h\to 0\].
Complete step-by-step answer:
We have to evaluate the given limit which is \[x\to 1\].
Let us put, \[x=1+h\].
If x = 1, then, \[1=1+h\Rightarrow h=0\].
Therefore, limit \[x\to 1\]changes to limit \[h\to 0\].
Therefore, to evaluate changes, put \[x=1+h\].
\[\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \ln \left( 1+1+h \right)-\ln 2 \right)\left( {{3.4}^{1+h-1}}-3\left( 1+h \right) \right)}{\left[ {{\left( 7+1+h \right)}^{\dfrac{1}{3}}}-{{\left[ 1+3\left( 1+h \right) \right]}^{\dfrac{1}{2}}} \right]\sin \left[ 1+h-1 \right]} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \ln \left( 2+h \right)-\ln 2 \right)\left( {{3.4}^{h}}-3-3h \right)}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh } \\
\end{align}\]
We know, \[\ln a-\ln b=\ln \left( \dfrac{a}{b} \right)\].
\[\therefore \ln \left( 2+h \right)-\ln 2=\ln \left( \dfrac{2+h}{2} \right)=\ln \left( 1+\dfrac{h}{2} \right)\]
\[=\lim \dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left( {{3.4}^{h}}-3-3h \right)}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh }\]
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh }\]
We know, \[\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sinh }{h}=1\].
Similarly, \[\underset{a\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+a \right)}{a}=1\].
Let us multiply 2h in the numerator and denominator.
\[\begin{align}
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]\times 2\times h}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh \times 2\times h} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh \times \dfrac{2h}{2h}} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\dfrac{h}{2}\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\left( \dfrac{\sinh }{h} \right)\times 2} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\dfrac{h}{2}\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\left[ \dfrac{\sinh }{h} \right]\times 2} \\
\end{align}\]
\[\dfrac{\ln \left( 1+\dfrac{h}{2} \right)}{\dfrac{h}{2}}=1\]and \[\dfrac{\sinh }{h}=1\].
L-Hospital rule states that for functions f and g are differentiable on an open interval I except possibly at point C contained I, if $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)=0$or $\pm \infty $, $g'\left( x \right)\ne 0$for all x in I with $x\ne c$, thus $\underset{x\to c}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}$.
If we apply $h\to 0$in equation (1), then the indeterminate form at $h\to 0$is $\dfrac{0}{0}$.
Thus, differentiate the numerator and denominator to simplify the expression to a limit that can be evaluated directly.
Let us put, $y={{4}^{h}}$.
$\begin{align}
& \ln y=\ln \left( {{4}^{h}} \right) \\
& \ln y=h\ln 4 \\
\end{align}$.
Differentiating both sides,
$\dfrac{1}{y}\dfrac{dy}{dh}=\ln 4$
$\Rightarrow \dfrac{dy}{dh}=y\ln 4$ (where, $y={{4}^{h}}$)
\[\Rightarrow \dfrac{dy}{dh}={{4}^{h}}.\ln 4\]
Applying L-Hospital rule once,
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{3\left( {{4}^{h}}.\ln 4-1 \right)}{2\left[ \dfrac{1}{3}{{\left( 8+h \right)}^{\dfrac{1}{3}-1}}-\dfrac{3}{2}{{\left( 4+3h \right)}^{\dfrac{1}{2}-1}} \right]}\]
Put h = 0, in the above equation.
\[\begin{align}
& =\dfrac{3\left( {{4}^{h}}.\ln 4-1 \right)}{2\left[ \dfrac{1}{3}{{8}^{\dfrac{-2}{3}}}-\dfrac{3}{2}{{4}^{\dfrac{-1}{2}}} \right]}=\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{3}\times \dfrac{1}{{{8}^{\dfrac{2}{3}}}}-\dfrac{1}{2}\times \dfrac{3}{{{4}^{\dfrac{1}{2}}}} \right]} \\
& =\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{3}\times \dfrac{1}{{{\left( {{2}^{3}} \right)}^{\dfrac{2}{3}}}}-\dfrac{1}{2}\times \dfrac{3}{2} \right]} \\
& =\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{3}\times \dfrac{1}{{{2}^{2}}}-\dfrac{3}{4} \right]}=\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{12}-\dfrac{3}{4} \right]} \\
& =\dfrac{3\left( 0-1 \right)}{2\left[ \dfrac{4-36}{12\times 4} \right]}=\dfrac{-3}{\dfrac{-2\times \left( 32 \right)}{12\times 4}}=\dfrac{-3}{\dfrac{-64}{48}}=\dfrac{-9}{4}\left( -1 \right)=\dfrac{9}{4} \\
\end{align}\]
Hence, the limit evaluates to \[\dfrac{9}{4}\].
Note: In limits be careful to use formula to simplify the expression wherever necessary. We have used substitutions and formulae to solve the limit. Remember these steps involved and how to change the limit \[\left( x\to 1 \right)\]to \[h\to 0\]. You can’t apply \[\left( x\to 1 \right)\]in an expression like this. So remember to convert it to \[h\to 0\].
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
