
Evaluate \[\underset{x\to 1}{\mathop{\lim }}\,\dfrac{\left( \ln \left( 1+x \right)-\ln 2 \right)\left( {{3.4}^{x-1}}-3x \right)}{\left[ {{\left( 7+x \right)}^{\dfrac{1}{3}}}-{{\left( 1+3x \right)}^{\dfrac{1}{2}}} \right]\sin \left( x-1 \right)}\].
Answer
619.2k+ views
Hint: Given limit \[x\to 1\], make the limit \[h\to 0\]. Simplify the expression and substitute using the L-Hospital rule if you get indeterminate form at h=0 as \[\dfrac{0}{0}\]. After simplifying the expression put, \[h\to 0\]and evaluate the expression.
Complete step-by-step answer:
We have to evaluate the given limit which is \[x\to 1\].
Let us put, \[x=1+h\].
If x = 1, then, \[1=1+h\Rightarrow h=0\].
Therefore, limit \[x\to 1\]changes to limit \[h\to 0\].
Therefore, to evaluate changes, put \[x=1+h\].
\[\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \ln \left( 1+1+h \right)-\ln 2 \right)\left( {{3.4}^{1+h-1}}-3\left( 1+h \right) \right)}{\left[ {{\left( 7+1+h \right)}^{\dfrac{1}{3}}}-{{\left[ 1+3\left( 1+h \right) \right]}^{\dfrac{1}{2}}} \right]\sin \left[ 1+h-1 \right]} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \ln \left( 2+h \right)-\ln 2 \right)\left( {{3.4}^{h}}-3-3h \right)}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh } \\
\end{align}\]
We know, \[\ln a-\ln b=\ln \left( \dfrac{a}{b} \right)\].
\[\therefore \ln \left( 2+h \right)-\ln 2=\ln \left( \dfrac{2+h}{2} \right)=\ln \left( 1+\dfrac{h}{2} \right)\]
\[=\lim \dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left( {{3.4}^{h}}-3-3h \right)}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh }\]
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh }\]
We know, \[\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sinh }{h}=1\].
Similarly, \[\underset{a\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+a \right)}{a}=1\].
Let us multiply 2h in the numerator and denominator.
\[\begin{align}
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]\times 2\times h}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh \times 2\times h} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh \times \dfrac{2h}{2h}} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\dfrac{h}{2}\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\left( \dfrac{\sinh }{h} \right)\times 2} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\dfrac{h}{2}\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\left[ \dfrac{\sinh }{h} \right]\times 2} \\
\end{align}\]
\[\dfrac{\ln \left( 1+\dfrac{h}{2} \right)}{\dfrac{h}{2}}=1\]and \[\dfrac{\sinh }{h}=1\].
L-Hospital rule states that for functions f and g are differentiable on an open interval I except possibly at point C contained I, if $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)=0$or $\pm \infty $, $g'\left( x \right)\ne 0$for all x in I with $x\ne c$, thus $\underset{x\to c}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}$.
If we apply $h\to 0$in equation (1), then the indeterminate form at $h\to 0$is $\dfrac{0}{0}$.
Thus, differentiate the numerator and denominator to simplify the expression to a limit that can be evaluated directly.
Let us put, $y={{4}^{h}}$.
$\begin{align}
& \ln y=\ln \left( {{4}^{h}} \right) \\
& \ln y=h\ln 4 \\
\end{align}$.
Differentiating both sides,
$\dfrac{1}{y}\dfrac{dy}{dh}=\ln 4$
$\Rightarrow \dfrac{dy}{dh}=y\ln 4$ (where, $y={{4}^{h}}$)
\[\Rightarrow \dfrac{dy}{dh}={{4}^{h}}.\ln 4\]
Applying L-Hospital rule once,
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{3\left( {{4}^{h}}.\ln 4-1 \right)}{2\left[ \dfrac{1}{3}{{\left( 8+h \right)}^{\dfrac{1}{3}-1}}-\dfrac{3}{2}{{\left( 4+3h \right)}^{\dfrac{1}{2}-1}} \right]}\]
Put h = 0, in the above equation.
\[\begin{align}
& =\dfrac{3\left( {{4}^{h}}.\ln 4-1 \right)}{2\left[ \dfrac{1}{3}{{8}^{\dfrac{-2}{3}}}-\dfrac{3}{2}{{4}^{\dfrac{-1}{2}}} \right]}=\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{3}\times \dfrac{1}{{{8}^{\dfrac{2}{3}}}}-\dfrac{1}{2}\times \dfrac{3}{{{4}^{\dfrac{1}{2}}}} \right]} \\
& =\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{3}\times \dfrac{1}{{{\left( {{2}^{3}} \right)}^{\dfrac{2}{3}}}}-\dfrac{1}{2}\times \dfrac{3}{2} \right]} \\
& =\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{3}\times \dfrac{1}{{{2}^{2}}}-\dfrac{3}{4} \right]}=\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{12}-\dfrac{3}{4} \right]} \\
& =\dfrac{3\left( 0-1 \right)}{2\left[ \dfrac{4-36}{12\times 4} \right]}=\dfrac{-3}{\dfrac{-2\times \left( 32 \right)}{12\times 4}}=\dfrac{-3}{\dfrac{-64}{48}}=\dfrac{-9}{4}\left( -1 \right)=\dfrac{9}{4} \\
\end{align}\]
Hence, the limit evaluates to \[\dfrac{9}{4}\].
Note: In limits be careful to use formula to simplify the expression wherever necessary. We have used substitutions and formulae to solve the limit. Remember these steps involved and how to change the limit \[\left( x\to 1 \right)\]to \[h\to 0\]. You can’t apply \[\left( x\to 1 \right)\]in an expression like this. So remember to convert it to \[h\to 0\].
Complete step-by-step answer:
We have to evaluate the given limit which is \[x\to 1\].
Let us put, \[x=1+h\].
If x = 1, then, \[1=1+h\Rightarrow h=0\].
Therefore, limit \[x\to 1\]changes to limit \[h\to 0\].
Therefore, to evaluate changes, put \[x=1+h\].
\[\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \ln \left( 1+1+h \right)-\ln 2 \right)\left( {{3.4}^{1+h-1}}-3\left( 1+h \right) \right)}{\left[ {{\left( 7+1+h \right)}^{\dfrac{1}{3}}}-{{\left[ 1+3\left( 1+h \right) \right]}^{\dfrac{1}{2}}} \right]\sin \left[ 1+h-1 \right]} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \ln \left( 2+h \right)-\ln 2 \right)\left( {{3.4}^{h}}-3-3h \right)}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh } \\
\end{align}\]
We know, \[\ln a-\ln b=\ln \left( \dfrac{a}{b} \right)\].
\[\therefore \ln \left( 2+h \right)-\ln 2=\ln \left( \dfrac{2+h}{2} \right)=\ln \left( 1+\dfrac{h}{2} \right)\]
\[=\lim \dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left( {{3.4}^{h}}-3-3h \right)}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh }\]
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh }\]
We know, \[\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sinh }{h}=1\].
Similarly, \[\underset{a\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+a \right)}{a}=1\].
Let us multiply 2h in the numerator and denominator.
\[\begin{align}
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]\times 2\times h}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh \times 2\times h} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh \times \dfrac{2h}{2h}} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\dfrac{h}{2}\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\left( \dfrac{\sinh }{h} \right)\times 2} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\dfrac{h}{2}\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\left[ \dfrac{\sinh }{h} \right]\times 2} \\
\end{align}\]
\[\dfrac{\ln \left( 1+\dfrac{h}{2} \right)}{\dfrac{h}{2}}=1\]and \[\dfrac{\sinh }{h}=1\].
L-Hospital rule states that for functions f and g are differentiable on an open interval I except possibly at point C contained I, if $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)=0$or $\pm \infty $, $g'\left( x \right)\ne 0$for all x in I with $x\ne c$, thus $\underset{x\to c}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}$.
If we apply $h\to 0$in equation (1), then the indeterminate form at $h\to 0$is $\dfrac{0}{0}$.
Thus, differentiate the numerator and denominator to simplify the expression to a limit that can be evaluated directly.
Let us put, $y={{4}^{h}}$.
$\begin{align}
& \ln y=\ln \left( {{4}^{h}} \right) \\
& \ln y=h\ln 4 \\
\end{align}$.
Differentiating both sides,
$\dfrac{1}{y}\dfrac{dy}{dh}=\ln 4$
$\Rightarrow \dfrac{dy}{dh}=y\ln 4$ (where, $y={{4}^{h}}$)
\[\Rightarrow \dfrac{dy}{dh}={{4}^{h}}.\ln 4\]
Applying L-Hospital rule once,
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{3\left( {{4}^{h}}.\ln 4-1 \right)}{2\left[ \dfrac{1}{3}{{\left( 8+h \right)}^{\dfrac{1}{3}-1}}-\dfrac{3}{2}{{\left( 4+3h \right)}^{\dfrac{1}{2}-1}} \right]}\]
Put h = 0, in the above equation.
\[\begin{align}
& =\dfrac{3\left( {{4}^{h}}.\ln 4-1 \right)}{2\left[ \dfrac{1}{3}{{8}^{\dfrac{-2}{3}}}-\dfrac{3}{2}{{4}^{\dfrac{-1}{2}}} \right]}=\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{3}\times \dfrac{1}{{{8}^{\dfrac{2}{3}}}}-\dfrac{1}{2}\times \dfrac{3}{{{4}^{\dfrac{1}{2}}}} \right]} \\
& =\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{3}\times \dfrac{1}{{{\left( {{2}^{3}} \right)}^{\dfrac{2}{3}}}}-\dfrac{1}{2}\times \dfrac{3}{2} \right]} \\
& =\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{3}\times \dfrac{1}{{{2}^{2}}}-\dfrac{3}{4} \right]}=\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{12}-\dfrac{3}{4} \right]} \\
& =\dfrac{3\left( 0-1 \right)}{2\left[ \dfrac{4-36}{12\times 4} \right]}=\dfrac{-3}{\dfrac{-2\times \left( 32 \right)}{12\times 4}}=\dfrac{-3}{\dfrac{-64}{48}}=\dfrac{-9}{4}\left( -1 \right)=\dfrac{9}{4} \\
\end{align}\]
Hence, the limit evaluates to \[\dfrac{9}{4}\].
Note: In limits be careful to use formula to simplify the expression wherever necessary. We have used substitutions and formulae to solve the limit. Remember these steps involved and how to change the limit \[\left( x\to 1 \right)\]to \[h\to 0\]. You can’t apply \[\left( x\to 1 \right)\]in an expression like this. So remember to convert it to \[h\to 0\].
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

