
Evaluate $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\cos }^{2}}x \right)}{{{x}^{2}}}$ is equal to.
A. $-\pi $
B. $\pi $
C. $\dfrac{\pi }{2}$
D. 1
Answer
592.8k+ views
Hint: Put ${{\cos }^{2}}x=1-{{\sin }^{2}}x.$ Then modify the function as limit of trigonometric function. Multiply by $\left( \pi {{\sin }^{2}}x \right)$in numerator and denominator.
Complete step-by-step answer:
In this limit we have a trigonometric question where the variables x represent the angle of the right angle triangle.
First simplify the trigonometric function by identities,
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\cos }^{2}}x \right)}{{{x}^{2}}}...................\left( i \right)$
We know ${{\cos }^{2}}x+{{\sin }^{2}}x=1$
$\Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x.$
Substitute value of ${{\cos }^{2}}x$ in equation (i);
$=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( n\left( 1-{{\sin }^{2}}x \right) \right)}{{{x}^{2}}}-\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi -\pi {{\sin }^{2}}x \right)}{{{x}^{2}}}$
We know it’s of the form $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$
$\therefore \sin \left( \pi -\pi {{\sin }^{2}}x \right)=\left( \sin \pi \times \cos \left( \pi {{\sin }^{2}}x \right) \right)-\left( \cos \pi \sin \left( \pi {{\sin }^{2}}x \right) \right)$
We know $\sin \pi =0\ \And \,\cos \pi =-1$
$\therefore \sin \left( \pi -\pi {{\sin }^{2}}x \right)=\sin \left( \pi {{\sin }^{2}}x \right)$
The angle including the sine function belongs to the 2nd quadrant. The sine function is positive in the 2nd quadrant.
$\begin{align}
& =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \pi {{\sin }^{2}}x}{{{x}^{2}}} \\
& =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}} \\
\end{align}$
$\Rightarrow \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}}$, sine function is positive in second quadrant.
Now we have to modify the function as the limit of the trigonometric function. Remember that if a sine function involves a limit, then you must try to transform the function exactly as the limit of the quotient of sin x by x, as x approaches zero rule.
$\therefore $ Multiply and divide the function $\pi {{\sin }^{2}}x$.
\[\begin{align}
& =\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}}\times 1 \right] \\
& =\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}}\times \dfrac{\pi {{\sin }^{2}}x}{\pi {{\sin }^{2}}x} \right] \\
& =\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}}\times \dfrac{\pi {{\sin }^{2}}x}{{{x}^{2}}} \right] \\
\end{align}\]
Apply the product rule of limits, the limit of product of two functions is equal to product of their limits.
\[\begin{align}
& =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\pi {{\sin }^{2}}x}{{{x}^{2}}} \\
& =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi \underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \\
\end{align}\]
\[\pi {{\sin }^{2}}x\]is the angle inside the sine function and its denominator but the same angle should be the input for the first limit function.
We know $x\to 0$,
$\sin x\to \sin \left( 0 \right)\Rightarrow \sin x\to 0$
Similarly ${{\sin }^{2}}x\to {{0}^{2}}\ \ \therefore {{\sin }^{2}}\to 0$
\[\pi {{\sin }^{2}}x\to \pi \times 0\ \ \ \therefore \pi {{\sin }^{2}}x\to 0\]
$\therefore $ if \[x\to 0\], then \[\pi {{\sin }^{2}}x\to 0\]
$\begin{align}
& \Rightarrow \underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi \underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \\
& =\underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi \underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{\sin x}{x} \right)}^{2}} \\
& =\underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi {{\left( \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x} \right)}^{2}} \\
\end{align}$
Use the limit of $\dfrac{\sin x}{x}$ rule as x approaches 0.
The limit of $\dfrac{\sin x}{x}$ as $x\to 0$is equal to 1 and apply it to each function to solve this limit trigonometric problem.
$\begin{align}
& \therefore \underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}=1 \\
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 \\
& \Rightarrow \underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi {{\left[ \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x} \right]}^{2}} \\
& 1\times \pi {{\left( 1 \right)}^{2}}=1\times \pi \\
& =\pi \\
\end{align}$
Therefore, it successfully solved the limit and the answer is option B.
Note: Each function in limit form is almost similar to $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}$, but it is essential to make adjustments for applying limit trigonometric rule.
Complete step-by-step answer:
In this limit we have a trigonometric question where the variables x represent the angle of the right angle triangle.
First simplify the trigonometric function by identities,
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\cos }^{2}}x \right)}{{{x}^{2}}}...................\left( i \right)$
We know ${{\cos }^{2}}x+{{\sin }^{2}}x=1$
$\Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x.$
Substitute value of ${{\cos }^{2}}x$ in equation (i);
$=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( n\left( 1-{{\sin }^{2}}x \right) \right)}{{{x}^{2}}}-\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi -\pi {{\sin }^{2}}x \right)}{{{x}^{2}}}$
We know it’s of the form $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$
$\therefore \sin \left( \pi -\pi {{\sin }^{2}}x \right)=\left( \sin \pi \times \cos \left( \pi {{\sin }^{2}}x \right) \right)-\left( \cos \pi \sin \left( \pi {{\sin }^{2}}x \right) \right)$
We know $\sin \pi =0\ \And \,\cos \pi =-1$
$\therefore \sin \left( \pi -\pi {{\sin }^{2}}x \right)=\sin \left( \pi {{\sin }^{2}}x \right)$
The angle including the sine function belongs to the 2nd quadrant. The sine function is positive in the 2nd quadrant.
$\begin{align}
& =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \pi {{\sin }^{2}}x}{{{x}^{2}}} \\
& =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}} \\
\end{align}$
$\Rightarrow \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}}$, sine function is positive in second quadrant.
Now we have to modify the function as the limit of the trigonometric function. Remember that if a sine function involves a limit, then you must try to transform the function exactly as the limit of the quotient of sin x by x, as x approaches zero rule.
$\therefore $ Multiply and divide the function $\pi {{\sin }^{2}}x$.
\[\begin{align}
& =\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}}\times 1 \right] \\
& =\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}}\times \dfrac{\pi {{\sin }^{2}}x}{\pi {{\sin }^{2}}x} \right] \\
& =\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}}\times \dfrac{\pi {{\sin }^{2}}x}{{{x}^{2}}} \right] \\
\end{align}\]
Apply the product rule of limits, the limit of product of two functions is equal to product of their limits.
\[\begin{align}
& =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\pi {{\sin }^{2}}x}{{{x}^{2}}} \\
& =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi \underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \\
\end{align}\]
\[\pi {{\sin }^{2}}x\]is the angle inside the sine function and its denominator but the same angle should be the input for the first limit function.
We know $x\to 0$,
$\sin x\to \sin \left( 0 \right)\Rightarrow \sin x\to 0$
Similarly ${{\sin }^{2}}x\to {{0}^{2}}\ \ \therefore {{\sin }^{2}}\to 0$
\[\pi {{\sin }^{2}}x\to \pi \times 0\ \ \ \therefore \pi {{\sin }^{2}}x\to 0\]
$\therefore $ if \[x\to 0\], then \[\pi {{\sin }^{2}}x\to 0\]
$\begin{align}
& \Rightarrow \underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi \underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \\
& =\underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi \underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{\sin x}{x} \right)}^{2}} \\
& =\underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi {{\left( \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x} \right)}^{2}} \\
\end{align}$
Use the limit of $\dfrac{\sin x}{x}$ rule as x approaches 0.
The limit of $\dfrac{\sin x}{x}$ as $x\to 0$is equal to 1 and apply it to each function to solve this limit trigonometric problem.
$\begin{align}
& \therefore \underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}=1 \\
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 \\
& \Rightarrow \underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi {{\left[ \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x} \right]}^{2}} \\
& 1\times \pi {{\left( 1 \right)}^{2}}=1\times \pi \\
& =\pi \\
\end{align}$
Therefore, it successfully solved the limit and the answer is option B.
Note: Each function in limit form is almost similar to $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}$, but it is essential to make adjustments for applying limit trigonometric rule.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Define cubit handspan armlength and footspan class 11 physics CBSE

Draw a diagram showing the external features of fish class 11 biology CBSE

Correct the following 1m1000cm class 11 physics CBSE

