
Evaluate the value of the following $\cot {{120}^{\circ }}=?$
$A)\dfrac{-1}{\sqrt{3}}$
$B)\dfrac{1}{\sqrt{3}}$
$C)\sqrt{3}$
$D)-\sqrt{3}$
Answer
505.2k+ views
Hint: To solve the question, the concept of trigonometric value should be known. The values of trigonometric values for certain numbers should be known. Details of the trigonometric function is required to solve the question.
Complete step by step answer:
To start with some details on the trigonometric function, $\cot $. We know that the trigonometric function $\cot x$ is the reciprocal of the other trigonometric function $\tan x$, this could be mathematically represented as
$\cot x=\dfrac{1}{\tan x}$…………………………………………………………. (i)
On applying the same formula to find value of the given question,
$\Rightarrow \cot {{120}^{\circ }}=\dfrac{1}{\tan {{120}^{\circ }}}$
We know that the value of $\tan x$ for $x$ belonging from $0$ to ${{90}^{\circ }}$ and from ${{180}^{\circ }}$ to ${{270}^{\circ }}$are positive, and for rest of the values of $x$ between $0-{{360}^{\circ }}$ the value of $\tan x$will be negative.
The value of
$\Rightarrow \tan {{120}^{\circ }}$
The angle ${{120}^{\circ }}$ will be written as the complementary angle which is in terms as the sum of ${{90}^{\circ }}$ and ${{30}^{\circ }}$.
$\Rightarrow \tan \left( {{90}^{\circ }}+{{30}^{\circ }} \right)$
Since the function$\tan x$has angle in second quadrant the function will be negative:
$\Rightarrow -\cot {{30}^{\circ }}$
$\Rightarrow -\dfrac{1}{\sqrt{3}}$
On substituting the value of $\tan {{120}^{\circ }}$in the expression$\cot {{120}^{\circ }}=\dfrac{1}{\tan {{120}^{\circ }}}$, so doing this we get:
$\Rightarrow \cot {{120}^{\circ }}=\dfrac{1}{-\dfrac{1}{\sqrt{3}}}$
$\Rightarrow \cot {{120}^{\circ }}=-\sqrt{3}$
So, the correct answer is “Option D”.
Note: Calculation of the trigonometric function with a certain angle becomes much easier with the help of the graph. Minimum and maximum value of the function could easily be known to us with the help of a graph. The problem could directly be found by a shortcut method.
$\Rightarrow \cot {{120}^{\circ }}=\cot \left( {{90}^{\circ }}+{{30}^{\circ }} \right)$
Since the value of ${{120}^{\circ }}$ is in the second quadrant so the trigonometric function $\tan $ and $\cot $ will give the negative value, so on conversion it becomes:
$\Rightarrow - \tan {{30}^{\circ }}$
The value of $\tan {{30}^{\circ }}$ is $\sqrt{3}$ . So on substituting the value in the above expression we get:
$\Rightarrow - \sqrt{3}$
Complete step by step answer:
To start with some details on the trigonometric function, $\cot $. We know that the trigonometric function $\cot x$ is the reciprocal of the other trigonometric function $\tan x$, this could be mathematically represented as
$\cot x=\dfrac{1}{\tan x}$…………………………………………………………. (i)
On applying the same formula to find value of the given question,
$\Rightarrow \cot {{120}^{\circ }}=\dfrac{1}{\tan {{120}^{\circ }}}$
We know that the value of $\tan x$ for $x$ belonging from $0$ to ${{90}^{\circ }}$ and from ${{180}^{\circ }}$ to ${{270}^{\circ }}$are positive, and for rest of the values of $x$ between $0-{{360}^{\circ }}$ the value of $\tan x$will be negative.
The value of
$\Rightarrow \tan {{120}^{\circ }}$
The angle ${{120}^{\circ }}$ will be written as the complementary angle which is in terms as the sum of ${{90}^{\circ }}$ and ${{30}^{\circ }}$.
$\Rightarrow \tan \left( {{90}^{\circ }}+{{30}^{\circ }} \right)$
Since the function$\tan x$has angle in second quadrant the function will be negative:
$\Rightarrow -\cot {{30}^{\circ }}$
$\Rightarrow -\dfrac{1}{\sqrt{3}}$
On substituting the value of $\tan {{120}^{\circ }}$in the expression$\cot {{120}^{\circ }}=\dfrac{1}{\tan {{120}^{\circ }}}$, so doing this we get:
$\Rightarrow \cot {{120}^{\circ }}=\dfrac{1}{-\dfrac{1}{\sqrt{3}}}$
$\Rightarrow \cot {{120}^{\circ }}=-\sqrt{3}$
So, the correct answer is “Option D”.
Note: Calculation of the trigonometric function with a certain angle becomes much easier with the help of the graph. Minimum and maximum value of the function could easily be known to us with the help of a graph. The problem could directly be found by a shortcut method.
$\Rightarrow \cot {{120}^{\circ }}=\cot \left( {{90}^{\circ }}+{{30}^{\circ }} \right)$
Since the value of ${{120}^{\circ }}$ is in the second quadrant so the trigonometric function $\tan $ and $\cot $ will give the negative value, so on conversion it becomes:
$\Rightarrow - \tan {{30}^{\circ }}$
The value of $\tan {{30}^{\circ }}$ is $\sqrt{3}$ . So on substituting the value in the above expression we get:
$\Rightarrow - \sqrt{3}$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

