Evaluate the limit $\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\dfrac{\mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt}{{{x}^{2}}-\dfrac{{{\pi }^{2}}}{16}}$
A) $\dfrac{8}{\pi }f(2)$
B) $\dfrac{2}{\pi }f(2)$
C) $\dfrac{2}{\pi }f\left( \dfrac{1}{2} \right)$
D) $2f(2)$
Answer
383.4k+ views
Hint: See that the limit is of the form $\dfrac{0}{0}$ and there is an integral in limit. Use Leibniz Rule and L’Hopital Rule to evaluate the limit.
Let the given limit be equal to \[L\],
$L=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\dfrac{\mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt}{{{x}^{2}}-\dfrac{{{\pi }^{2}}}{16}}$
If we substitute \[x\] as $\dfrac{\pi }{4}$ we get,
$L=\dfrac{\mathop{\int }_{2}^{{{\sec }^{2}}\dfrac{\pi }{4}}f\left( t \right)dt}{{{\left( \dfrac{\pi }{4} \right)}^{2}}-\dfrac{{{\pi }^{2}}}{16}}$
\[L=\dfrac{\mathop{\int }_{2}^{{{\sqrt{2}}^{2}}}f\left( t \right)dt}{\dfrac{{{\pi }^{2}}}{16}-\dfrac{{{\pi }^{2}}}{16}}\]
\[L=\dfrac{\mathop{\int }_{2}^{2}f\left( t \right)dt}{\dfrac{{{\pi }^{2}}}{16}-\dfrac{{{\pi }^{2}}}{16}}\]
We know that \[\int\limits_{a}^{a}{f(x)dx=0}\]. Therefore, the numerator tends to \[0\].
\[L=\dfrac{0}{0}\]
The numerator and denominator tends to zero as \[x\] tends to $\dfrac{\pi }{4}$, so the limit is of the form $\dfrac{0}{0}$. So we can use L’Hopital’s Rule i.e. differentiating the numerator and denominator separately to evaluate the limit. L’Hopital Rule can only be used when the limit is of the form $\dfrac{0}{0}$ or$\dfrac{\infty }{\infty }$.
$L=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( \mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt \right)}{\dfrac{d}{dx}\left( {{x}^{2}}-\dfrac{{{\pi }^{2}}}{16} \right)}$
For evaluating the numerator we use Leibniz’s Rule i.e.
$\dfrac{d}{dx}\left( \mathop{\int }_{b\left( x \right)}^{a\left( x \right)}f\left( x \right)dx \right)=\left\{ f\left( a\left( x \right) \right)~a'\left( x \right) \right\}-\left\{ f\left( b\left( x \right) \right)b'\left( x \right) \right\}$ where\[a'\left( x \right)\]and \[b'\left( x \right)\]are derivatives of functions \[a\left( x \right)\]and \[b\left( x \right)\] with respect to\[x\].
$\dfrac{d}{dx}\left( \mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt \right)=f\left( se{{c}^{2}}\left( x \right) \right)~\left( 2se{{c}^{2}}\left( x \right)\tan \left( x \right) \right)-\left( f\left( 2 \right)\left( 0 \right) \right)$
$\dfrac{d}{dx}\left( \mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt \right)=2f\left( se{{c}^{2}}\left( x \right) \right)se{{c}^{2}}\left( x \right))\text{tan}\left( x \right)$
So,
$L=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\dfrac{2f\left( se{{c}^{2}}\left( x \right) \right)se{{c}^{2}}\left( x \right))\text{tan}\left( x \right)}{2x}$
Now we can simply evaluate the limit by substituting \[x\] as$\dfrac{\pi }{4}$.
$\text{L= }\!\!~\!\!\text{ }\dfrac{2f\left( se{{c}^{2}}\left( \text{ }\!\!~\!\!\text{ }\dfrac{\pi }{4} \right) \right)se{{c}^{2}}\left( \text{ }\!\!~\!\!\text{ }\dfrac{\pi }{4} \right))\text{tan}\left( \text{ }\!\!~\!\!\text{ }\dfrac{\pi }{4} \right)}{2~\times ~\text{ }\!\!~\!\!\text{ }\dfrac{\pi }{4}}$
$\text{L= }\!\!~\!\!\text{ }\dfrac{2f\left( 2 \right)\times 2\times 1}{\dfrac{\pi }{2}}$
$\text{L= }\!\!~\!\!\text{ }\dfrac{8}{\pi }f\left( 2 \right)$
So, the answer is Option A) $\dfrac{8}{\pi }f(2)$
Note: Students must be careful while using Leibniz Rule and L'Hopital Rule. They might make mistakes by only differentiating the numerator only the denominator only, or not using Leibniz Rule correctly i.e. they might not differentiate the limits, not put the limits correctly, etc. Do not use L'Hopital's Rule multiple times, it may lead to incorrect answers.
Let the given limit be equal to \[L\],
$L=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\dfrac{\mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt}{{{x}^{2}}-\dfrac{{{\pi }^{2}}}{16}}$
If we substitute \[x\] as $\dfrac{\pi }{4}$ we get,
$L=\dfrac{\mathop{\int }_{2}^{{{\sec }^{2}}\dfrac{\pi }{4}}f\left( t \right)dt}{{{\left( \dfrac{\pi }{4} \right)}^{2}}-\dfrac{{{\pi }^{2}}}{16}}$
\[L=\dfrac{\mathop{\int }_{2}^{{{\sqrt{2}}^{2}}}f\left( t \right)dt}{\dfrac{{{\pi }^{2}}}{16}-\dfrac{{{\pi }^{2}}}{16}}\]
\[L=\dfrac{\mathop{\int }_{2}^{2}f\left( t \right)dt}{\dfrac{{{\pi }^{2}}}{16}-\dfrac{{{\pi }^{2}}}{16}}\]
We know that \[\int\limits_{a}^{a}{f(x)dx=0}\]. Therefore, the numerator tends to \[0\].
\[L=\dfrac{0}{0}\]
The numerator and denominator tends to zero as \[x\] tends to $\dfrac{\pi }{4}$, so the limit is of the form $\dfrac{0}{0}$. So we can use L’Hopital’s Rule i.e. differentiating the numerator and denominator separately to evaluate the limit. L’Hopital Rule can only be used when the limit is of the form $\dfrac{0}{0}$ or$\dfrac{\infty }{\infty }$.
$L=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( \mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt \right)}{\dfrac{d}{dx}\left( {{x}^{2}}-\dfrac{{{\pi }^{2}}}{16} \right)}$
For evaluating the numerator we use Leibniz’s Rule i.e.
$\dfrac{d}{dx}\left( \mathop{\int }_{b\left( x \right)}^{a\left( x \right)}f\left( x \right)dx \right)=\left\{ f\left( a\left( x \right) \right)~a'\left( x \right) \right\}-\left\{ f\left( b\left( x \right) \right)b'\left( x \right) \right\}$ where\[a'\left( x \right)\]and \[b'\left( x \right)\]are derivatives of functions \[a\left( x \right)\]and \[b\left( x \right)\] with respect to\[x\].
$\dfrac{d}{dx}\left( \mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt \right)=f\left( se{{c}^{2}}\left( x \right) \right)~\left( 2se{{c}^{2}}\left( x \right)\tan \left( x \right) \right)-\left( f\left( 2 \right)\left( 0 \right) \right)$
$\dfrac{d}{dx}\left( \mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt \right)=2f\left( se{{c}^{2}}\left( x \right) \right)se{{c}^{2}}\left( x \right))\text{tan}\left( x \right)$
So,
$L=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\dfrac{2f\left( se{{c}^{2}}\left( x \right) \right)se{{c}^{2}}\left( x \right))\text{tan}\left( x \right)}{2x}$
Now we can simply evaluate the limit by substituting \[x\] as$\dfrac{\pi }{4}$.
$\text{L= }\!\!~\!\!\text{ }\dfrac{2f\left( se{{c}^{2}}\left( \text{ }\!\!~\!\!\text{ }\dfrac{\pi }{4} \right) \right)se{{c}^{2}}\left( \text{ }\!\!~\!\!\text{ }\dfrac{\pi }{4} \right))\text{tan}\left( \text{ }\!\!~\!\!\text{ }\dfrac{\pi }{4} \right)}{2~\times ~\text{ }\!\!~\!\!\text{ }\dfrac{\pi }{4}}$
$\text{L= }\!\!~\!\!\text{ }\dfrac{2f\left( 2 \right)\times 2\times 1}{\dfrac{\pi }{2}}$
$\text{L= }\!\!~\!\!\text{ }\dfrac{8}{\pi }f\left( 2 \right)$
So, the answer is Option A) $\dfrac{8}{\pi }f(2)$
Note: Students must be careful while using Leibniz Rule and L'Hopital Rule. They might make mistakes by only differentiating the numerator only the denominator only, or not using Leibniz Rule correctly i.e. they might not differentiate the limits, not put the limits correctly, etc. Do not use L'Hopital's Rule multiple times, it may lead to incorrect answers.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is pollution? How many types of pollution? Define it

Change the following sentences into negative and interrogative class 10 english CBSE

Why do noble gases have positive electron gain enthalpy class 11 chemistry CBSE

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE

Write an application to the principal requesting five class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
