Answer
Verified
493.5k+ views
Hint: See that the limit is of the form $\dfrac{0}{0}$ and there is an integral in limit. Use Leibniz Rule and L’Hopital Rule to evaluate the limit.
Let the given limit be equal to \[L\],
$L=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\dfrac{\mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt}{{{x}^{2}}-\dfrac{{{\pi }^{2}}}{16}}$
If we substitute \[x\] as $\dfrac{\pi }{4}$ we get,
$L=\dfrac{\mathop{\int }_{2}^{{{\sec }^{2}}\dfrac{\pi }{4}}f\left( t \right)dt}{{{\left( \dfrac{\pi }{4} \right)}^{2}}-\dfrac{{{\pi }^{2}}}{16}}$
\[L=\dfrac{\mathop{\int }_{2}^{{{\sqrt{2}}^{2}}}f\left( t \right)dt}{\dfrac{{{\pi }^{2}}}{16}-\dfrac{{{\pi }^{2}}}{16}}\]
\[L=\dfrac{\mathop{\int }_{2}^{2}f\left( t \right)dt}{\dfrac{{{\pi }^{2}}}{16}-\dfrac{{{\pi }^{2}}}{16}}\]
We know that \[\int\limits_{a}^{a}{f(x)dx=0}\]. Therefore, the numerator tends to \[0\].
\[L=\dfrac{0}{0}\]
The numerator and denominator tends to zero as \[x\] tends to $\dfrac{\pi }{4}$, so the limit is of the form $\dfrac{0}{0}$. So we can use L’Hopital’s Rule i.e. differentiating the numerator and denominator separately to evaluate the limit. L’Hopital Rule can only be used when the limit is of the form $\dfrac{0}{0}$ or$\dfrac{\infty }{\infty }$.
$L=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( \mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt \right)}{\dfrac{d}{dx}\left( {{x}^{2}}-\dfrac{{{\pi }^{2}}}{16} \right)}$
For evaluating the numerator we use Leibniz’s Rule i.e.
$\dfrac{d}{dx}\left( \mathop{\int }_{b\left( x \right)}^{a\left( x \right)}f\left( x \right)dx \right)=\left\{ f\left( a\left( x \right) \right)~a'\left( x \right) \right\}-\left\{ f\left( b\left( x \right) \right)b'\left( x \right) \right\}$ where\[a'\left( x \right)\]and \[b'\left( x \right)\]are derivatives of functions \[a\left( x \right)\]and \[b\left( x \right)\] with respect to\[x\].
$\dfrac{d}{dx}\left( \mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt \right)=f\left( se{{c}^{2}}\left( x \right) \right)~\left( 2se{{c}^{2}}\left( x \right)\tan \left( x \right) \right)-\left( f\left( 2 \right)\left( 0 \right) \right)$
$\dfrac{d}{dx}\left( \mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt \right)=2f\left( se{{c}^{2}}\left( x \right) \right)se{{c}^{2}}\left( x \right))\text{tan}\left( x \right)$
So,
$L=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\dfrac{2f\left( se{{c}^{2}}\left( x \right) \right)se{{c}^{2}}\left( x \right))\text{tan}\left( x \right)}{2x}$
Now we can simply evaluate the limit by substituting \[x\] as$\dfrac{\pi }{4}$.
$\text{L= }\!\!~\!\!\text{ }\dfrac{2f\left( se{{c}^{2}}\left( \text{ }\!\!~\!\!\text{ }\dfrac{\pi }{4} \right) \right)se{{c}^{2}}\left( \text{ }\!\!~\!\!\text{ }\dfrac{\pi }{4} \right))\text{tan}\left( \text{ }\!\!~\!\!\text{ }\dfrac{\pi }{4} \right)}{2~\times ~\text{ }\!\!~\!\!\text{ }\dfrac{\pi }{4}}$
$\text{L= }\!\!~\!\!\text{ }\dfrac{2f\left( 2 \right)\times 2\times 1}{\dfrac{\pi }{2}}$
$\text{L= }\!\!~\!\!\text{ }\dfrac{8}{\pi }f\left( 2 \right)$
So, the answer is Option A) $\dfrac{8}{\pi }f(2)$
Note: Students must be careful while using Leibniz Rule and L'Hopital Rule. They might make mistakes by only differentiating the numerator only the denominator only, or not using Leibniz Rule correctly i.e. they might not differentiate the limits, not put the limits correctly, etc. Do not use L'Hopital's Rule multiple times, it may lead to incorrect answers.
Let the given limit be equal to \[L\],
$L=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\dfrac{\mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt}{{{x}^{2}}-\dfrac{{{\pi }^{2}}}{16}}$
If we substitute \[x\] as $\dfrac{\pi }{4}$ we get,
$L=\dfrac{\mathop{\int }_{2}^{{{\sec }^{2}}\dfrac{\pi }{4}}f\left( t \right)dt}{{{\left( \dfrac{\pi }{4} \right)}^{2}}-\dfrac{{{\pi }^{2}}}{16}}$
\[L=\dfrac{\mathop{\int }_{2}^{{{\sqrt{2}}^{2}}}f\left( t \right)dt}{\dfrac{{{\pi }^{2}}}{16}-\dfrac{{{\pi }^{2}}}{16}}\]
\[L=\dfrac{\mathop{\int }_{2}^{2}f\left( t \right)dt}{\dfrac{{{\pi }^{2}}}{16}-\dfrac{{{\pi }^{2}}}{16}}\]
We know that \[\int\limits_{a}^{a}{f(x)dx=0}\]. Therefore, the numerator tends to \[0\].
\[L=\dfrac{0}{0}\]
The numerator and denominator tends to zero as \[x\] tends to $\dfrac{\pi }{4}$, so the limit is of the form $\dfrac{0}{0}$. So we can use L’Hopital’s Rule i.e. differentiating the numerator and denominator separately to evaluate the limit. L’Hopital Rule can only be used when the limit is of the form $\dfrac{0}{0}$ or$\dfrac{\infty }{\infty }$.
$L=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( \mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt \right)}{\dfrac{d}{dx}\left( {{x}^{2}}-\dfrac{{{\pi }^{2}}}{16} \right)}$
For evaluating the numerator we use Leibniz’s Rule i.e.
$\dfrac{d}{dx}\left( \mathop{\int }_{b\left( x \right)}^{a\left( x \right)}f\left( x \right)dx \right)=\left\{ f\left( a\left( x \right) \right)~a'\left( x \right) \right\}-\left\{ f\left( b\left( x \right) \right)b'\left( x \right) \right\}$ where\[a'\left( x \right)\]and \[b'\left( x \right)\]are derivatives of functions \[a\left( x \right)\]and \[b\left( x \right)\] with respect to\[x\].
$\dfrac{d}{dx}\left( \mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt \right)=f\left( se{{c}^{2}}\left( x \right) \right)~\left( 2se{{c}^{2}}\left( x \right)\tan \left( x \right) \right)-\left( f\left( 2 \right)\left( 0 \right) \right)$
$\dfrac{d}{dx}\left( \mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt \right)=2f\left( se{{c}^{2}}\left( x \right) \right)se{{c}^{2}}\left( x \right))\text{tan}\left( x \right)$
So,
$L=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\dfrac{2f\left( se{{c}^{2}}\left( x \right) \right)se{{c}^{2}}\left( x \right))\text{tan}\left( x \right)}{2x}$
Now we can simply evaluate the limit by substituting \[x\] as$\dfrac{\pi }{4}$.
$\text{L= }\!\!~\!\!\text{ }\dfrac{2f\left( se{{c}^{2}}\left( \text{ }\!\!~\!\!\text{ }\dfrac{\pi }{4} \right) \right)se{{c}^{2}}\left( \text{ }\!\!~\!\!\text{ }\dfrac{\pi }{4} \right))\text{tan}\left( \text{ }\!\!~\!\!\text{ }\dfrac{\pi }{4} \right)}{2~\times ~\text{ }\!\!~\!\!\text{ }\dfrac{\pi }{4}}$
$\text{L= }\!\!~\!\!\text{ }\dfrac{2f\left( 2 \right)\times 2\times 1}{\dfrac{\pi }{2}}$
$\text{L= }\!\!~\!\!\text{ }\dfrac{8}{\pi }f\left( 2 \right)$
So, the answer is Option A) $\dfrac{8}{\pi }f(2)$
Note: Students must be careful while using Leibniz Rule and L'Hopital Rule. They might make mistakes by only differentiating the numerator only the denominator only, or not using Leibniz Rule correctly i.e. they might not differentiate the limits, not put the limits correctly, etc. Do not use L'Hopital's Rule multiple times, it may lead to incorrect answers.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE